Auto-Math
Un angle d'un triangle rectangle mesure \( 40^{\circ} \). Que mesurent les autre angles ?
\( 25^{\circ}\mbox{ et }25^{\circ} \)
\( 40^{\circ}\mbox{ et }90^{\circ} \)
\(50^{\circ}\mbox{ et }90^{\circ} \)
\( 180^{\circ}\mbox{ et }50^{\circ} \)
Si \(\alpha=53^{\circ}\) , alors l'opposé de \(\alpha\) vaut
\( 35^{\circ} \)
\( 233^{\circ} \)
\( 413^{\circ} \)
\( -53^{\circ} \)
Si \(\alpha=53^{\circ}\) , alors le complémentaire de \(\alpha\) vaut
\( 37^{\circ}\)
\( 127^{\circ} \)
\( 143^{\circ} \)
Résolvez l'équation \(\sin 5x +1=0 \).
\( S=\left\{-\dfrac{1}{5}\right\} \)
\( S=\left\{\dfrac{3\pi}{10},\, -\dfrac{\pi}{10}\right\} \)
\( S=\left\{\dfrac{3\pi}{10}+2k\pi,\, -\dfrac{\pi}{10}+2k\pi;\, k\in\mathbb{Z}\right\} \)
\( S=\left\{\dfrac{3\pi}{10}+2k\dfrac{\pi}{5};\, k\in\mathbb{Z}\right\} \)
Résolvez l'équation \(2\sin{3x}+\sqrt{2}=0\) .
\( S=\left\{\dfrac{5\pi}{12},\, \dfrac{7\pi}{12}\right\} \)
\( S=\left\{\dfrac{5\pi}{12}+2k\dfrac{\pi}{3},\, \dfrac{7\pi}{12}+2k\dfrac{\pi}{3};\, k\in\mathbb{Z}\right\} \)
\(S=\left\{\dfrac{5\pi}{12}+2k\pi,\, \dfrac{7\pi}{12}+2k\pi;\, k\in\mathbb{Z}\right\} \)
\( S=\left\{\dfrac{7\pi}{12}+2k\dfrac{\pi}{3};\, k\in\mathbb{Z}\right\} \)
Sans calculatrice, calculez \(tg\, \theta\) si \(\theta=315^{\circ}\) .
\( \dfrac{7\pi}{4} \)
\( -1 \)
\( 1 \)
n'existe pas
Résolvez l'équation \(tg\, x =1\) .
\(S=\left\{\dfrac{\pi}{4}\right\} \)
\(S=\left\{\dfrac{\pi}{4}+k\pi;\, k\in\mathbb{Z}\right\} \)
\( S=\left\{\dfrac{\pi}{4},\, \dfrac{5\pi}{4}\right\} \)
\( S=\left\{\dfrac{\pi}{4}+2k\pi;\, k\in\mathbb{Z}\right\} \)
Convertissez en radians l'angle \(-160^\circ \).
\( -160\mbox{ radians}\)
\( \dfrac{8\pi}{9} \mbox{ radians}\)
\(\dfrac{10\pi}{9} \mbox{ radians}\)
\( -\dfrac{10\pi}{9}\mbox{ radians}\)
\(\sin (3\pi +a)= \)
\( \sin a \)
\( -\sin a \)
\( \cos a \)
\( \pi+\sin a \)
Donnez la valeur de \( cotg\left(\dfrac{2\pi}{3}\right) \).
\(60 \)
\( -\sqrt{3} \)
\( -\dfrac{\sqrt{3}}{3} \)
\( \dfrac{\sqrt{3}}{3} \)