Auto-Math
Déterminez à quelle fonction correspond le graphe suivant.
\(y=-x+1\)
\(y=x+1\)
\(y=x-1\)
\(x=y+1\)
Déterminez les racines de la fonction \(\normalsize y=\sqrt{x^2-9} \).
\( -3\) et \(3\)
\(0\)
\(9\)
pas de racine
\( y=-2x+4 \)
\( y=x^2+4 \)
\( y=4-x^2 \)
\( y=\dfrac{4}{2x} \)
Ecrivez la fonction \(3(x-1)=2(y+3)\) sous la forme \(y=f(x)\).
\( y=\frac{3}{2}x-6 \)
\( y=\frac{3}{2}x-\frac{9}{2} \)
\( y=\frac{3}{2}x-9 \)
\( y=\frac{3}{2}x+\frac{3}{2} \)
Ecrivez la formule de la fonction dont le rapport entre l'abscisse et l'ordonnée vaut 4.
\( y=4x \)
\(y=x+4 \)
\( y=\frac{x}{4} \)
\( y=\frac{4}{x} \)
Soient les fonctions \(f(x)= x^2 - 2 \vert x \vert\) et \(g(x)=x^2 + 1 \). Calculez \((g \circ f)(-4) \).
65
265
337
401
\( y=x+3 \)
\( y=x^2-3 \)
\(y=x^2+6x+9 \)
\(y=x^2-6x+9 \)
Soient les fonctions \(\normalsize g(x) = x^2 \), \(\normalsize h(x) = 2^x \), \(\normalsize s(x) = \sin x \). Effectuez la décomposition de la fonction \(\normalsize f(x) = 2^{\sin x}\) en termes des fonctions \(\normalsize g \), \(\normalsize h\) et \(\normalsize s \).
\( (h\circ s)(x) \)
\( (s\circ h)(x) \)
\((g\circ s)(x) \)
\((s\circ s)(x) \)
Soient les fonctions \(\normalsize g(x) = x^2\), \(\normalsize h(x) = 2^x \), \(\normalsize s(x) = \sin x \). Effectuez la décomposition de la fonction \(f(x) =2^{2^x} \) en termes des fonctions \(\normalsize g \), \(\normalsize h\) et \(\normalsize s \).
\((h\circ h)(x) \)
\( (h\circ g)(x) \)
\((g \circ g)(x) \)
impossible
Le volume d'un parallélipipède rectangle de 3 cm de hauteur vaut 48 cm\( \normalsize ^3\) . Si \(x\) et \(y\) représentent les dimensions de la base, donnez une fonction qui exprime \(y\) en fonction de \(x\).
\( y=21-x \)
\( y=45-x \)
\( y=\dfrac{8}{x} \)
\(y=\dfrac{16}{x} \)