Fonctions : Test de niveau 2

Déterminez à quelle fonction correspond le graphe suivant.

Déterminez les racines de la fonction \(\normalsize y=\sqrt{x^2-9} \).

Déterminez à quelle fonction correspond le graphe suivant.

Ecrivez la fonction \(3(x-1)=2(y+3)\) sous la forme \(y=f(x)\).

Ecrivez la formule de la fonction dont le rapport entre l'abscisse et l'ordonnée vaut 4.

Soient les fonctions \(f(x)= x^2 - 2 \vert x \vert\)  et \(g(x)=x^2 + 1 \). Calculez \((g \circ f)(-4) \).

Déterminez à quelle fonction correspond le graphe suivant.

Soient les fonctions \(\normalsize g(x) = x^2 \), \(\normalsize h(x) = 2^x \), \(\normalsize s(x) = \sin x \). Effectuez la décomposition de la fonction \(\normalsize f(x) = 2^{\sin x}\)  en termes des fonctions \(\normalsize g \), \(\normalsize h\) et \(\normalsize s \).

Soient les fonctions \(\normalsize g(x) = x^2\), \(\normalsize h(x) = 2^x \), \(\normalsize s(x) = \sin x \). Effectuez la décomposition de la fonction \(f(x) =2^{2^x} \)  en termes des fonctions \(\normalsize g \), \(\normalsize h\)  et \(\normalsize s \).

Le volume d'un parallélipipède rectangle de 3 cm de hauteur vaut 48 cm\( \normalsize ^3\) . Si \(x\)  et \(y\)  représentent les dimensions de la base, donnez une fonction qui exprime \(y\) en fonction de \(x\).