Auto-Math
La fonction \(\normalsize f(x) = x +\frac{1}{x}\) est
paire
impaire
ni paire ni impaire
Déterminez à quelle fonction correspond le graphe suivant.
\( y=x-2 \)
\(y=\sqrt{x}+2 \)
\(y=\sqrt{x}-2 \)
\( y=\sqrt{x-2} \)
Ecrivez la formule de la fonction dont l'ordonnée vaut le tiers de l'abscisse diminuée de 2.
\( 3y=x-2 \)
\(y=\frac{1}{3}x-2 \)
\( x=\frac{1}{3}y-2 \)
\(y=3(x-2) \)
Ecrivez la fonction \(\normalsize h(x) = \sqrt{1 + \sqrt x}\) comme la composée \(\normalsize g \circ f\) où \(\normalsize f\) et \(\normalsize g\) sont deux fonctions simples, aucune n'étant la fonction identité.
\( f(x)=1+\sqrt{x} \\ g(x)=\sqrt{1+x} \)
\(f(x)=\sqrt{1+x} \\ g(x)=\sqrt{x} \)
\( f(x)=1+\sqrt{x}\\g(x)=\sqrt{x} \)
\( f(x)=\sqrt{x} \\g(x)=1+\sqrt{x} \)
La fonction\( \normalsize f(x) = x^2 +\frac{1}{x^2}\) est
Déterminez les racines de la fonction \(\normalsize y=\sqrt{x^2-9} \).
\( -3\) et \(3\)
\(0\)
\(9\)
pas de racine
Ecrivez la formule de la fonction dont le rapport entre l'abscisse et l'ordonnée vaut 4.
\( y=4x \)
\(y=x+4 \)
\( y=\frac{x}{4} \)
\( y=\frac{4}{x} \)
Déterminez les points d'abscisse \(3\).
\(x=2\)
\(x=4\)
\( y=2\)
\(y=4\)
Soient les fonctions \(f(x)= x^2 - 2 \vert x \vert\) et \(g(x)=x^2 + 1\) . Calculez \((f \circ g)(-2) \).
1
3
15
65
La fonction \( \normalsize f(x)=\frac{\sin{(\sin{x})}}{\sin{x}}\) est-elle paire ou impaire ?