Auto-Math
Soit A=(-1,5), B=(1,1) et C=(-4,2). Le point F tel que $ \overrightarrow{AB}=\overrightarrow{FC}$ est
\((-2,-2)\)
\((\frac{1}{4},\frac{5}{2})\)
\((-6,6)\)
\((2,-4)\)
Soit A=(-1,5), B=(1,1) et C=(-4,2). Le point E tel que \( \overrightarrow{AE}=\overrightarrow{CB}\) est
\((6,4)\)
\((4,4)\)
\((4,\frac{2}{5})\)
\((5,-1)\)
Le point \(P\) est soumis à une force \( \vec{F}\) d'intensité 5 Newton. La direction de cette force est
\( N20^\circ E\). Donnez la composante verticale de \( \vec{F}\).
\(5\cos{70^{\circ}}\)
\(5\sin{20^{\circ}}\)
\(-5\sin{70^{\circ}}\)
\(5\sin{70^{\circ}}\)
L'intensité et la direction d'une force constante sont donnéespar \( \overrightarrow{a}= (2,5)\). Calculez le travail effectué si le point d'application de la force se déplace de l'origine au point P=(4,1).
\(14\)
\((6,6)\)
\(13\)
\(40\)
Soit A=(-1,5), B=(1,1) et C=(-4,2). Le point D tel que \( \overrightarrow{AB}=\overrightarrow{CD}\) est
On considère les vecteurs \((-\frac{2}{5},\frac{1}{3})\) et \((-\frac{3}{4},m)\). Déterminez \(m\) pour que ces deux vecteurs soient parallèles.
\(m=\frac{10}{9}\)
\(m=\frac{8}{45}\)
\(m=\frac{5}{8}\)
\(m=0\)
Un parallélipipède a comme arêtes concourantes les vecteurs (1,3,1), (2,0,-1) et (-2,2,-1). En admettant que les deux derniers vecteurs déterminent la base de ce parallélipipède, calculez l'aire de sa base.
6
18
(2,4,4)
3
Calculez la résultante des force P=60 N et Q=40 N appliquées au boulon A si ces forces forment un angle de respectivement \( 30^{\circ}\) et \( 45^{\circ}\) avec l'horizontale.
\((30+20\sqrt{2},30\sqrt{3}+20\sqrt{2})\)
\((600\sqrt{6},600\sqrt{2})\)
\((30\sqrt{3}+20\sqrt{2},30+20\sqrt{2})\)
\(600\sqrt{6}+600\sqrt{2}\)
Un parallélipipède a comme arêtes concourantes les vecteurs (1,3,1), (2,0,-1) et (-2,2,-1). En admettant que les deux derniers vecteurs déterminent la base de ce parallélipipède, calculez son volume.
\(-18\)
\((2,4,4)\)
\(6\)
\(18\)
On considère les vecteurs \((-5\sqrt{2},m)\) et \((3\sqrt{2},-\sqrt{3})\). Déterminez \(m\) pour que ces deux vecteurs soient parallèles.
\(m=2\sqrt{6}\)
\(m=-9\sqrt{3}\)
\(m=-\sqrt{3}-8\sqrt{2}\)
\(m=\frac{5\sqrt{3}}{3}\)