Auto-Math
Soit A=(1,3), B=(-2,1) et C=(2,0). Le point D tel que \( \overrightarrow{AD}=\overrightarrow{AB}+\overrightarrow{AC}\) est
\((0,1)\)
\((5,2)\)
\((-2,-5)\)
\((-1,-2)\)
Soit A=(-1,5), B=(1,1) et C=(-4,2). Le point F tel que $ \overrightarrow{AB}=\overrightarrow{FC}$ est
\((-2,-2)\)
\((\frac{1}{4},\frac{5}{2})\)
\((-6,6)\)
\((2,-4)\)
Le point P est soumis à une force \( \vec{F}\) d'intensité 8 Newton. La direction de cette force est
\( N65^\circ O\). Donnez la composante verticale de \( \vec{F}\).
\(-8\cos{25^{\circ}}\)
\(8\sin{25^{\circ}}\)
\(8\cos{25^{\circ}}\)
\(8\sin{65^{\circ}}\)
Soit A=(4,4,4), B=(2,2,0) et M le milieu du segment reliant A et B. Donnez l'équation de la sphère centrée en M et passant par A et B.
\((x-3)^2+(y-3)^2+(z-2)^2=24\)
\((x-1)^2+(y-1)^2+(z-2)^2=6\)
\((x-3)^2+(y-3)^2+(z-2)^2=6\)
\((x-3)^2+(y-3)^2+(z-2)^2=\sqrt{6}\)
On considère les vecteurs \((-5\sqrt{2},m)\) et \((3\sqrt{2},-\sqrt{3})\). Déterminez \(m\) pour que ces deux vecteurs soient parallèles.
\(m=2\sqrt{6}\)
\(m=-9\sqrt{3}\)
\(m=-\sqrt{3}-8\sqrt{2}\)
\(m=\frac{5\sqrt{3}}{3}\)
L'expression \( ||\vec{a}||(\vec{b}\odot\vec{c})\) a-t-elle un sens ?
oui
non
je ne sais pas
Calculez \(\frac{1}{2}(2,3)-\frac{2}{5}(5,-1)\).
\((-1,4)\)
\((-1,-\frac{5}{3})\)
\((-1,\frac{19}{10})\)
\((-1,\frac{11}{10})\)
Donner l'équation du cercle de centre (1,2) et passant par le point (6,-1).
\((x-1)^2+(y-2)^2=\sqrt{34}\)
\((x-1)^2+(y-2)^2=4\)
\((x-1)^2+(y-2)^2=2\)
\((x-1)^2+(y-2)^2=34\)
L'intensité et la direction d'une force constante sont donnéespar \( \overrightarrow{a}= (2,5)\). Calculez le travail effectué si le point d'application de la force se déplace de l'origine au point P=(4,1).
\(14\)
\((6,6)\)
\(13\)
\(40\)
Soit \(B=(3,-\frac{1}{3})\) et \(D=(-3,-2)\). Calculez les coordonnées de \(E\) pour que \( \overrightarrow{OE}=2\overrightarrow{BD}\).
\((-6,-\frac{5}{3})\)
impossible
\((-18,\frac{4}{3})\)
\((-12,-\frac{10}{3})\)