Auto-Math
Soit \( A=(-4,\frac{1}{2})\), \( B=(3,-\frac{1}{3})\), \( C=(-\frac{1}{2},0)\) et \( D=(-3,-2)\). Calculez les coordonnées de \(E\) pour que \(\overrightarrow{OE}=\overrightarrow{AD}-2\overrightarrow{BD}\).
\((-11,-\frac{35}{6})\)
\((13,\frac{5}{6})\)
\((30,-\frac{7}{3})\)
\((-13,-\frac{5}{6})\)
Soit A=(1,3) et B=(4,1). Déterminez C pour que OACB soit un parallélogramme.
\((3,-2)\)
\((-3,2)\)
\((5,4)\)
impossible
Soit A=(4,4,4), B=(2,2,0) et M le milieu du segment reliant A et B. Donnez l'équation de la sphère centrée en M et passant par A et B.
\((x-3)^2+(y-3)^2+(z-2)^2=24\)
\((x-1)^2+(y-1)^2+(z-2)^2=6\)
\((x-3)^2+(y-3)^2+(z-2)^2=6\)
\((x-3)^2+(y-3)^2+(z-2)^2=\sqrt{6}\)
Un parallélipipède a comme arêtes concourantes les vecteurs (1,3,1), (2,0,-1) et (-2,2,-1). En admettant que les deux derniers vecteurs déterminent la base de ce parallélipipède, calculez l'aire de sa base.
6
18
(2,4,4)
3
Le point P est soumis à une force \( \vec{F}\) d'intensité 8 Newton. La direction de cette force est
\( N65^\circ O\). Donnez la composante horizontale de \( \vec{F}\).
\(-8\cos{25^{\circ}}\)
\(8\cos{25^{\circ}}\)
\(-8\cos{65^{\circ}}\)
\(8\sin{65^{\circ}}\)
Soit A=(1,3) et B=(4,1). Déterminez C pour que OABC soit un parallélogramme.
Déterminez \(\vec b=(\alpha,\beta,\gamma)\) pour que les
\(\vec b=(1,1,2)\)
\(\vec b=(1,\frac{1}{2},-\frac{1}{3})\)
\(\vec b=(\frac{7}{12},\frac{1}{6},\frac{3}{4})\)
Soit A=(-1,5), B=(1,1) et C=(-4,2). Le point E tel que \( \overrightarrow{AE}=\overrightarrow{CB}\) est
\((6,4)\)
\((4,4)\)
\((4,\frac{2}{5})\)
\((5,-1)\)
Le point \(P\) est soumis à une force \( \vec{F}\) d'intensité 5 Newton. La direction de cette force est
\( N20^\circ E\). Donnez la composante verticale de \( \vec{F}\).
\(5\cos{70^{\circ}}\)
\(5\sin{20^{\circ}}\)
\(-5\sin{70^{\circ}}\)
\(5\sin{70^{\circ}}\)
Soit \(A=(-4,\frac{1}{2})\), \(B=(3,-\frac{1}{3})\), \(C=(-\frac{1}{2},0)\) et \(D=(-3,-2)\). Calculez les coordonnées de \(E\) pour que \(\overrightarrow{OE}=\overrightarrow{AB}+\overrightarrow{CD}\).
\((\frac{9}{2},-\frac{17}{6})\)
\((1,-\frac{7}{6})\)
\((-\frac{21}{2},-\frac{1}{6})\)
\((-\frac{9}{2},\frac{17}{6})\)