Auto-Math
Soit A=(1,3) et B=(4,1). Déterminez C pour que OACB soit un parallélogramme.
\((3,-2)\)
\((-3,2)\)
\((5,4)\)
impossible
Donner le rayon du cercle de centre (1,2) et passant par le point (6,-1).
\(\sqrt{34}\)
\(34\)
\(4\)
\(2\)
Soit \(A=(-4,\frac{1}{2})\), \(B=(3,-\frac{1}{3})\), \(C=(-\frac{1}{2},0)\) et \(D=(-3,-2)\). Calculez les coordonnées de \(E\) pour que \(\overrightarrow{OE}=\overrightarrow{AB}+\overrightarrow{CD}\).
\((\frac{9}{2},-\frac{17}{6})\)
\((1,-\frac{7}{6})\)
\((-\frac{21}{2},-\frac{1}{6})\)
\((-\frac{9}{2},\frac{17}{6})\)
Soit A=(-1,5), B=(1,1) et C=(-4,2). Le point F tel que $ \overrightarrow{AB}=\overrightarrow{FC}$ est
\((-2,-2)\)
\((\frac{1}{4},\frac{5}{2})\)
\((-6,6)\)
\((2,-4)\)
Si \(\vec{a}=(-2,3,1)\), \(\vec{b}=(7,4,5)\) et \(\vec{c}=(1,-5,2)\) alors \(\vec{a}\odot(\vec{b}+\vec{c})=\)
\((28,-42,-14)\)
\(-12\)
\(336\)
\((-48,6,-42)\)
Le point \(P\) est soumis à une force \( \vec{F}\) d'intensité 5 Newton. La direction de cette force est
\( N20^\circ E\). Donnez la composante horizontale de \( \vec{F}\).
\(5\sin{70^{\circ}}\)
\(-5\cos{70^{\circ}}\)
\(5\cos{70^{\circ}}\)
\(5\cos{20^{\circ}}\)
Soit A=(1,3), B=(-2,1) et C=(2,0). Le point D tel que \( \overrightarrow{AD}=\overrightarrow{AB}+\overrightarrow{AC}\) est
\((0,1)\)
\((5,2)\)
\((-2,-5)\)
\((-1,-2)\)
Dans un repère orthonormé dont l'unité est le centimètre, calculer \(b\) pour que le point (3,b) soit à 5 cm de l'origine.
\(b=4 \mbox{ ou } b=-4\)
\(b=5\)
\(b=8\)
Soit \( A=(-4,\frac{1}{2})\), \( B=(3,-\frac{1}{3})\), \( C=(-\frac{1}{2},0)\) et \( D=(-3,-2)\). Calculez les coordonnées de \(E\) pour que \(\overrightarrow{OE}=\overrightarrow{AD}-2\overrightarrow{BD}\).
\((-11,-\frac{35}{6})\)
\((13,\frac{5}{6})\)
\((30,-\frac{7}{3})\)
\((-13,-\frac{5}{6})\)
Soit A=(1,3) et B=(2,-6). Déterminez C pour que OABC soit un parallélogramme.
\((3,-3)\)
\((1,-9)\)
\((-1,9)\)