Auto-Math
Soit A=(1,3) et B=(4,1). Déterminez C pour que OABC soit un parallélogramme.
\((5,4)\)
\((-3,2)\)
impossible
\((3,-2)\)
Soit \(A=(-4,\frac{1}{2})\), \(B=(3,-\frac{1}{3})\), \(C=(-\frac{1}{2},0)\) et \(D=(-3,-2)\). Calculez les coordonnées de \(E\) pour que \(\overrightarrow{OE}=\overrightarrow{AB}+\overrightarrow{CD}\).
\((\frac{9}{2},-\frac{17}{6})\)
\((1,-\frac{7}{6})\)
\((-\frac{21}{2},-\frac{1}{6})\)
\((-\frac{9}{2},\frac{17}{6})\)
L'intensité et la direction d'une force constante sont données par le vecteur \( \vec{F}=(5,2,6)\).
Calculez le travail effectué par cette force si son point d'application se déplace de A=(1,-1,2) jusque B=(4,3,-1).
\(-5\)
\(24\)
\((15,8,-18)\)
\(5\)
Soit A=(-1,5), B=(1,1) et C=(-4,2). Le point F tel que $ \overrightarrow{AB}=\overrightarrow{FC}$ est
\((-2,-2)\)
\((\frac{1}{4},\frac{5}{2})\)
\((-6,6)\)
\((2,-4)\)
Soit A=(-1,5), B=(1,1) et C=(-4,2). Le point E tel que \( \overrightarrow{AE}=\overrightarrow{CB}\) est
\((6,4)\)
\((4,4)\)
\((4,\frac{2}{5})\)
\((5,-1)\)
Soit A=(1,3), B=(-2,1) et C=(2,0). Le point F tel que \( \overrightarrow{BF}=\overrightarrow{BA}+\overrightarrow{BC}\) est
\((-\frac{7}{2},1)\)
\((5,2)\)
\((-1,-2)\)
\((7,1)\)
Donner l'équation du cercle de centre (1,2) et passant par le point (6,-1).
\((x-1)^2+(y-2)^2=\sqrt{34}\)
\((x-1)^2+(y-2)^2=4\)
\((x-1)^2+(y-2)^2=2\)
\((x-1)^2+(y-2)^2=34\)
Soit A=(1,3), B=(-2,1) et C=(2,0). Le point E tel que \( \overrightarrow{CE}=\overrightarrow{CB}+\overrightarrow{CA}\) est
\((-3,4)\)
\((-1,0)\)
\((-5,4)\)
L'expression \( \vec{a}\odot\vec{b}+\vec{c}\) a-t-elle un sens ?
oui
non
je ne sais pas
Soit A=(4,4,4), B=(2,2,0) et M le milieu du segment reliant A et B. Donnez l'équation de la sphère centrée en M et passant par A et B.
\((x-3)^2+(y-3)^2+(z-2)^2=24\)
\((x-1)^2+(y-1)^2+(z-2)^2=6\)
\((x-3)^2+(y-3)^2+(z-2)^2=6\)
\((x-3)^2+(y-3)^2+(z-2)^2=\sqrt{6}\)