Repères et vecteurs : Test de niveau 2

Soit A=(-1,5), B=(1,1) et C=(-4,2). Le point F tel que $ \overrightarrow{AB}=\overrightarrow{FC}$ est

Soit A=(-1,5), B=(1,1) et C=(-4,2). Le point E tel que \( \overrightarrow{AE}=\overrightarrow{CB}\) est

Le point \(P\) est soumis à une force \( \vec{F}\) d'intensité 5 Newton. La direction de cette force est

\( N20^\circ E\). Donnez la composante verticale de \( \vec{F}\).

L'intensité et la direction d'une force constante sont donnéespar \( \overrightarrow{a}= (2,5)\). Calculez le travail effectué si le point d'application de la force se déplace de l'origine au point P=(4,1).

Soit A=(-1,5), B=(1,1) et C=(-4,2). Le point D tel que \( \overrightarrow{AB}=\overrightarrow{CD}\) est

On considère les vecteurs \((-\frac{2}{5},\frac{1}{3})\) et \((-\frac{3}{4},m)\). Déterminez \(m\) pour que ces deux vecteurs soient parallèles.

Un parallélipipède a comme arêtes concourantes les vecteurs (1,3,1), (2,0,-1) et (-2,2,-1). En admettant que
les deux derniers vecteurs déterminent la base de ce parallélipipède, calculez l'aire de sa base.

Calculez la résultante des force P=60 N et Q=40 N appliquées au boulon A si ces forces forment un angle de respectivement \( 30^{\circ}\) et \( 45^{\circ}\) avec l'horizontale.

Un parallélipipède a comme arêtes concourantes les vecteurs (1,3,1), (2,0,-1) et (-2,2,-1). En admettant que les deux derniers vecteurs déterminent la base de ce parallélipipède, calculez son volume.

On considère les vecteurs \((-5\sqrt{2},m)\) et \((3\sqrt{2},-\sqrt{3})\). Déterminez \(m\) pour que ces deux vecteurs soient parallèles.