Repères et vecteurs : Test de niveau 2

Soit A=(1,3) et B=(4,1). Déterminez C pour que OACB soit un parallélogramme.

Donner le rayon du cercle de centre (1,2) et passant par le point (6,-1).

Soit \(A=(-4,\frac{1}{2})\), \(B=(3,-\frac{1}{3})\), \(C=(-\frac{1}{2},0)\) et \(D=(-3,-2)\). Calculez les coordonnées de \(E\) pour que \(\overrightarrow{OE}=\overrightarrow{AB}+\overrightarrow{CD}\).

Soit A=(-1,5), B=(1,1) et C=(-4,2). Le point F tel que $ \overrightarrow{AB}=\overrightarrow{FC}$ est

Si \(\vec{a}=(-2,3,1)\), \(\vec{b}=(7,4,5)\) et \(\vec{c}=(1,-5,2)\) alors \(\vec{a}\odot(\vec{b}+\vec{c})=\)

Le point \(P\) est soumis à une force \( \vec{F}\) d'intensité 5 Newton. La direction de cette force est

\( N20^\circ E\). Donnez la composante horizontale de \( \vec{F}\).

Soit A=(1,3), B=(-2,1) et C=(2,0). Le point D tel que \( \overrightarrow{AD}=\overrightarrow{AB}+\overrightarrow{AC}\) est

Dans un repère orthonormé dont l'unité est le centimètre, calculer \(b\) pour que le point (3,b) soit à 5 cm de l'origine.

Soit \( A=(-4,\frac{1}{2})\), \( B=(3,-\frac{1}{3})\)\( C=(-\frac{1}{2},0)\) et \( D=(-3,-2)\). Calculez les coordonnées de \(E\) pour que \(\overrightarrow{OE}=\overrightarrow{AD}-2\overrightarrow{BD}\).

Soit A=(1,3) et B=(2,-6). Déterminez C pour que OABC soit un parallélogramme.