Auto-Math
Si \( \vec{a}=(-2,3,1)\), \( \vec{b}=(7,4,5)\) et \(\vec{c}=(1,-5,2)\) alors \( \vec{a}\odot\vec{b}+\vec{a}\odot\vec{c}=\)
\(118\)
\(-780\)
\(-12\)
\((-16,-3,7)\)
Un parallélipipède a comme arêtes concourantes les vecteurs (1,3,1), (2,0,-1) et (-2,2,-1). En admettant que les deux derniers vecteurs déterminent la base de ce parallélipipède, calculez son volume.
\(-18\)
\((2,4,4)\)
\(6\)
\(18\)
Donner l'équation du cercle de centre (1,2) et passant par le point (6,-1).
\((x-1)^2+(y-2)^2=\sqrt{34}\)
\((x-1)^2+(y-2)^2=4\)
\((x-1)^2+(y-2)^2=2\)
\((x-1)^2+(y-2)^2=34\)
Soit A=(1,3) et B=(2,-6). Déterminez C pour que OACB soit un parallélogramme.
\((3,-3)\)
\((1,-9)\)
\((3,9)\)
impossible
Soit A=(1,3), B=(-2,1) et C=(2,0). Le point E tel que \( \overrightarrow{CE}=\overrightarrow{CB}+\overrightarrow{CA}\) est
\((-3,4)\)
\((-1,0)\)
\((5,2)\)
\((-5,4)\)
Calculez la résultante des force P=60 N et Q=40 N appliquées au boulon A si ces forces forment un angle de respectivement \( 30^{\circ}\) et \( 45^{\circ}\) avec l'horizontale.
\((30+20\sqrt{2},30\sqrt{3}+20\sqrt{2})\)
\((600\sqrt{6},600\sqrt{2})\)
\((30\sqrt{3}+20\sqrt{2},30+20\sqrt{2})\)
\(600\sqrt{6}+600\sqrt{2}\)
Soit \(B=(3,-\frac{1}{3})\) et \(D=(-3,-2)\). Calculez les coordonnées de \(E\) pour que \( \overrightarrow{OE}=2\overrightarrow{BD}\).
\((-6,-\frac{5}{3})\)
\((-18,\frac{4}{3})\)
\((-12,-\frac{10}{3})\)
Dans un repère orthonormé dont l'unité est le centimètre, calculer \(b\) pour que le point (0,b) soit à \( \sqrt{5}\) cm du point (2,3).
\(b=5\)
\(b=4 \mbox{ ou } b=2\)
\(b=8\)
On considère les vecteurs \((-5\sqrt{2},m)\) et \((3\sqrt{2},-\sqrt{3})\). Déterminez \(m\) pour que ces deux vecteurs soient parallèles.
\(m=2\sqrt{6}\)
\(m=-9\sqrt{3}\)
\(m=-\sqrt{3}-8\sqrt{2}\)
\(m=\frac{5\sqrt{3}}{3}\)
Déterminez \(m\) en sachant que le point \(P=(2,1,5)\) est à une distance 7 du milieu du segment joignant \(A=(1,2,3)\) à \(B=(-1,6,m)\).
\(m=19\)
\(m=2\sqrt{39}+13 \)
\(m=19 \mbox{ ou } m=-5\)