Repères et vecteurs : Test de niveau 2

Si \( \vec a=(1,-2,1)\), \(\vec b=(-1,2,1)\)\( \vec c=(2,0,-1)\) et \( \vec d=(0,1,1)\) alors \( (\vec a\times\vec b)\odot(\vec c\times\vec d)=\)

Soit A=(1,3) et B=(4,1). Déterminez C pour que OABC soit un parallélogramme.

Sur un plan incliné dont la pente fait un angle de \( 30^{\circ}\) avec l'horizontale, on pousse vers le haut un petit wagonnet pesant 500 N. Calculez le travail effectué pour compenser la force de gravitation si l'on pousse le wagonnet sur une distance de 24 m.

Si \(\vec{a}=(-2,3,1)\), \(\vec{b}=(7,4,5)\) et \(\vec{c}=(1,-5,2)\) alors \(\vec{a}\odot(\vec{b}+\vec{c})=\)

L'expression \( (\vec{a}\odot\vec{b})\vec{c}\) a-t-elle un sens ?

Soient \( P_1 = (2,5,2)\)\( P_2 = (2,7,0)\) et \( P_3 = (0,7,0)\).

Calculez le produit vectoriel \(\vec{P_1 P_2} \times\vec{P_1 P_3}\).

Soit \( \vec{v}=(-3,1,1)\) et \( \vec{w}=(m,m-1, 5)\). Calculez les valeurs de \(m\) pour lesquelles \(\vec{v}\) et \( \vec{w}\) sont orthogonaux.

Soit A=(4,4,4), B=(2,2,0) et M le milieu du segment reliant A et B. Donnez l'équation de la sphère centrée en M et passant par A et B.

Soit \(B=(3,-\frac{1}{3})\) et \(D=(-3,-2)\). Calculez les coordonnées de \(E\) pour que \( \overrightarrow{OE}=2\overrightarrow{BD}\).

Donner l'équation du cercle de centre (1,2) et passant par le point (6,-1).