Repères et vecteurs : Test de niveau 2

Soit A=(1,3) et B=(4,1). Déterminez C pour que OABC soit un parallélogramme.

Soit A=(1,3), B=(-2,1) et C=(2,0). Le point F tel que \( \overrightarrow{BF}=\overrightarrow{BA}+\overrightarrow{BC}\) est

L'expression \( ||\vec{a}||(\vec{b}\odot\vec{c})\) a-t-elle un sens ?

L'expression \( \vec{a}\odot(\vec{b}+\vec{c})\) a-t-elle un sens ?

On considère les vecteurs \((-5\sqrt{2},m)\) et \((3\sqrt{2},-\sqrt{3})\). Déterminez \(m\) pour que ces deux vecteurs soient parallèles.

Calculez la résultante des force P=60 N et Q=40 N appliquées au boulon A si ces forces forment un angle de respectivement \( 30^{\circ}\) et \( 45^{\circ}\) avec l'horizontale.

On considère trois points P, Q et R de coordonnées P=(-1,3,-5), Q=(2,k,-1) et R=(m,0,-8), avec k et m des nombres réels.

Déterminez les valeurs des paramètres k et m telles que le triangle de sommets P, Q et R soit rectangle en P, et les côtés PQ et PR soient de même longueur.

Soit A=(-1,5), B=(1,1) et C=(-4,2). Le point E tel que \( \overrightarrow{AE}=\overrightarrow{CB}\) est

Soit \( P_1=(-1,2,3)\) et \(P_2=(2,-2,8)\). Déterminez les coordonnées de \( P_3\) tel que

\( \overrightarrow{P_1P_3}=3\, \overrightarrow{P_1P_2}\).

L'intensité et la direction d'une force constante sont donnéespar \( \overrightarrow{a}= (2,5)\). Calculez le travail effectué si le point d'application de la force se déplace de l'origine au point P=(4,1).