Auto-Math
Si \(\vec{a}=(-2,3,1)\), \(\vec{b}=(7,4,5)\) et \(\vec{c}=(1,-5,2)\) alors \(\vec{a}\odot(\vec{b}+\vec{c})=\)
\((28,-42,-14)\)
\(-12\)
\(336\)
\((-48,6,-42)\)
Soit A=(1,3) et B=(2,-6). Déterminez C pour que OABC soit un parallélogramme.
\((3,-3)\)
\((1,-9)\)
\((-1,9)\)
impossible
Soit A=(1,3) et B=(4,1). Déterminez C pour que OABC soit un parallélogramme.
\((5,4)\)
\((-3,2)\)
\((3,-2)\)
Le point P est soumis à une force \( \vec{F}\) d'intensité 8 Newton. La direction de cette force est
\( N65^\circ O\). Donnez la composante verticale de \( \vec{F}\).
\(-8\cos{25^{\circ}}\)
\(8\sin{25^{\circ}}\)
\(8\cos{25^{\circ}}\)
\(8\sin{65^{\circ}}\)
Soit \( \vec{v}=(-3,1,1)\) et \( \vec{w}=(m,m-1, 5)\). Calculez les valeurs de \(m\) pour lesquelles \(\vec{v}\) et \( \vec{w}\) sont orthogonaux.
\(m=-2\)
\(m=2\)
\(m=\frac{-5-\sqrt{85}}{-6}\)
Soit A=(1,3), B=(-2,1) et C=(2,0). Le point D tel que \( \overrightarrow{AD}=\overrightarrow{AB}+\overrightarrow{AC}\) est
\((0,1)\)
\((5,2)\)
\((-2,-5)\)
\((-1,-2)\)
L'expression \( \vec{a}\odot\vec{b}+\vec{c}\) a-t-elle un sens ?
oui
non
je ne sais pas
L'intensité et la direction d'une force constante sont données par le vecteur \( \vec{F}=(5,2,6)\).
Calculez le travail effectué par cette force si son point d'application se déplace de A=(1,-1,2) jusque B=(4,3,-1).
\(-5\)
\(24\)
\((15,8,-18)\)
\(5\)
Déterminez les valeurs de \(c\) pour que les vecteurs \( \vec{a}=(c,-2,3)\) et \(\vec{b}=(c,c,-5)\) soient orthogonaux.
\(c=0\)
\(c=-5\mbox{ ou }c=3\)
\(c=5\mbox{ ou }c=-3\)
Soit \( A=(-4,\frac{1}{2})\), \( B=(3,-\frac{1}{3})\), \( C=(-\frac{1}{2},0)\) et \( D=(-3,-2)\). Calculez les coordonnées de \(E\) pour que \(\overrightarrow{OE}=\overrightarrow{AD}-2\overrightarrow{BD}\).
\((-11,-\frac{35}{6})\)
\((13,\frac{5}{6})\)
\((30,-\frac{7}{3})\)
\((-13,-\frac{5}{6})\)