Repères et vecteurs : Test de niveau 2

Soit \( A=(-4,\frac{1}{2})\), \( B=(3,-\frac{1}{3})\)\( C=(-\frac{1}{2},0)\) et \( D=(-3,-2)\). Calculez les coordonnées de \(E\) pour que \(\overrightarrow{OE}=\overrightarrow{AD}-2\overrightarrow{BD}\).

Soit A=(1,3) et B=(4,1). Déterminez C pour que OACB soit un parallélogramme.

Soit A=(4,4,4), B=(2,2,0) et M le milieu du segment reliant A et B. Donnez l'équation de la sphère centrée en M et passant par A et B.

Un parallélipipède a comme arêtes concourantes les vecteurs (1,3,1), (2,0,-1) et (-2,2,-1). En admettant que
les deux derniers vecteurs déterminent la base de ce parallélipipède, calculez l'aire de sa base.

Le point P est soumis à une force \( \vec{F}\) d'intensité 8 Newton. La direction de cette force est

\( N65^\circ O\). Donnez la composante horizontale de \( \vec{F}\).

Soit A=(1,3) et B=(4,1). Déterminez C pour que OABC soit un parallélogramme.

Déterminez  \(\vec b=(\alpha,\beta,\gamma)\) pour que les

Soit A=(-1,5), B=(1,1) et C=(-4,2). Le point E tel que \( \overrightarrow{AE}=\overrightarrow{CB}\) est

Le point \(P\) est soumis à une force \( \vec{F}\) d'intensité 5 Newton. La direction de cette force est

\( N20^\circ E\). Donnez la composante verticale de \( \vec{F}\).

Soit \(A=(-4,\frac{1}{2})\), \(B=(3,-\frac{1}{3})\), \(C=(-\frac{1}{2},0)\) et \(D=(-3,-2)\). Calculez les coordonnées de \(E\) pour que \(\overrightarrow{OE}=\overrightarrow{AB}+\overrightarrow{CD}\).