Auto-Math
Déterminez à quelle fonction correspond le graphe suivant.
\( y=x+3 \)
\( y=x^2-3 \)
\(y=x^2+6x+9 \)
\(y=x^2-6x+9 \)
Soit \(\normalsize f: \mathbb{R} \to \mathbb{R}: x \mapsto 1-\frac{x}{\sqrt{x^2+2}} \). Quel est le domaine de définition de \(\normalsize f\) ?
\( \mathbb{R} \)
\(\mathbb{R}\setminus\{-2,2\} \)
\(\mathbb{R}\setminus\{-\sqrt{2},\sqrt{2}\} \)
\( ]-\infty;-\sqrt{2}[\, \cup\, ]\sqrt{2};+\infty[ \)
Soient les fonctions \(\normalsize g(x) = x^2\), \(\normalsize h(x) = 2^x \), \(\normalsize s(x) = \sin x \). Effectuez la décomposition de la fonction \(f(x) =2^{2^x} \) en termes des fonctions \(\normalsize g \), \(\normalsize h\) et \(\normalsize s \).
\((h\circ h)(x) \)
\( (h\circ g)(x) \)
\((g \circ g)(x) \)
impossible
\( y=\dfrac{1}{x} \)
\( y=\dfrac{2}{x} \)
\( y=\dfrac{x}{2} \)
\( y=(x-1)^2 \)
Ecrivez la formule de la fonction dont l'ordonnée vaut le tiers de l'abscisse diminuée de 2.
\( 3y=x-2 \)
\(y=\frac{1}{3}x-2 \)
\( x=\frac{1}{3}y-2 \)
\(y=3(x-2) \)
Le volume d'un parallélipipède rectangle de 3 cm de hauteur vaut 48 cm\( \normalsize ^3\) . Si \(x\) et \(y\) représentent les dimensions de la base, donnez une fonction qui exprime \(y\) en fonction de \(x\).
\( y=21-x \)
\( y=45-x \)
\( y=\dfrac{8}{x} \)
\(y=\dfrac{16}{x} \)
\( y=\cos x+2 \)
\( y=\cos{3x}+1 \)
\( y=\sin x+2 \)
\( y=\sin{3x}+1\)
Ecrivez la formule de la fonction dont l'ordonnée vaut le double de l'abscisse, augmenté de 3.
\( y=2(x+3) \)
\(y=2x+3 \)
\( x=2y+3 \)
\(y=\frac{x}{2}+3 \)
Déterminez le domaine de définition de la fonction \(\normalsize f(x)=\frac{\sin{(\sin{x})}}{\sin{x}} \).
\( \mathbb{R}_0 \)
\( \mathbb{R}\setminus\{0,\pi\} \)
\(\mathbb{R}\setminus\{k\pi;\, k\in\mathbb{Z}\} \)
\( \mathbb{R}\setminus\{\frac{\pi}{2}+k\pi;\, k\in\mathbb{Z}\} \)
Soient les fonctions \(\normalsize g(x) = x^2 \), \(\normalsize h(x) = 2^x \), \(\normalsize s(x) = \sin x \). Effectuez la décomposition de la fonction \(\normalsize f(x) = 2^{\sin x}\) en termes des fonctions \(\normalsize g \), \(\normalsize h\) et \(\normalsize s \).
\( (h\circ s)(x) \)
\( (s\circ h)(x) \)
\((g\circ s)(x) \)
\((s\circ s)(x) \)