Auto-Math
Soient les fonctions \(\normalsize g(x) = x^2\), \(\normalsize h(x) = 2^x \), \(\normalsize s(x) = \sin x \). Effectuez la décomposition de la fonction \(f(x) =2^{2^x} \) en termes des fonctions \(\normalsize g \), \(\normalsize h\) et \(\normalsize s \).
\((h\circ h)(x) \)
\( (h\circ g)(x) \)
\((g \circ g)(x) \)
impossible
Soit \(\normalsize f: \mathbb{R} \to \mathbb{R}: x \mapsto 1-\frac{x}{\sqrt{x^2+2}} \). Quel est le domaine de définition de \(\normalsize f\) ?
\( \mathbb{R} \)
\(\mathbb{R}\setminus\{-2,2\} \)
\(\mathbb{R}\setminus\{-\sqrt{2},\sqrt{2}\} \)
\( ]-\infty;-\sqrt{2}[\, \cup\, ]\sqrt{2};+\infty[ \)
Déterminez les points d'abscisse \(3\).
\(x=2\)
\(x=4\)
\( y=2\)
\(y=4\)
Ecrivez la fonction \(\normalsize \frac{3x+1}{2}=\frac{y-1}{3}\) sous la forme\( \normalsize y=f(x) \).
\( y=\frac{9}{2}x+\frac{5}{2} \)
\(y=3x+2 \)
\( y=\frac{9}{2}x+\frac{1}{2} \)
\( y=2x+\frac{5}{3} \)
Soient les fonctions \(\normalsize g(x) = x^2 \), \(\normalsize h(x) = 2^x \), \(\normalsize s(x) = \sin x \). Effectuez la décomposition de la fonction \(\normalsize f(x) = \sin 2^x\) en termes des fonctions \(\normalsize g \), \(\normalsize h\) et \(\normalsize s \).
\( (h\circ s)(2) \)
\( (h\circ s)(x) \)
\( (s\circ h)(x) \)
Ecrivez la formule de la fonction dont le produit de l'abscisse et de l'opposé de l'ordonnée vaut 2.
\(y=\frac{x}{2} \)
\( y=-2x \)
\(x=-2y \)
\( y=-\frac{2}{x} \)
Déterminez le domaine de définition de la fonction \(\normalsize f(x)=\frac{\sin{(\sin{x})}}{\sin{x}} \).
\( \mathbb{R}_0 \)
\( \mathbb{R}\setminus\{0,\pi\} \)
\(\mathbb{R}\setminus\{k\pi;\, k\in\mathbb{Z}\} \)
\( \mathbb{R}\setminus\{\frac{\pi}{2}+k\pi;\, k\in\mathbb{Z}\} \)
Déterminez à quelle fonction correspond le graphe suivant.
\(y=x^2-3x \)
\( y=-x^2+3 \)
\( y=x^3-x^2+1 \)
\(y=x^3-3x^2 \)
Soient les fonctions \(\normalsize g(x) = x^2 \), \(\normalsize h(x) = 2^x \), \(\normalsize s(x) = \sin x \). Calculez \(\normalsize (g \circ s)(y) \).
\( \sin{y^2} \)
\( \sin^2{y} \)
\( (\sin x)^2 \)
Soient les fonctions \(\normalsize f(x)= x^2 - 2 \vert x \vert\) et \(\normalsize g(x)=x^2 + 1 \). Calculez \(\normalsize (g \circ f)(3) \).
\(80\)
\(30\)
\(10\)