Auto-Math
Déterminez l'ordonnée correspondant au point d'abscisse \(\normalsize x=-2 \) par la fonction \(\normalsize f(x)=\sqrt{x-2} \).
impossible
\(0\)
\(-2\)
\(6\)
Déterminer les racines de la fonction \(f(x)=-2x+2\).
\(x=1\)
\(y=1\)
\(x=2\)
\(y=2\)
Soit \(\normalsize f~: \mathbb{R} \to \mathbb{R}~: x \mapsto \frac{1}{\sqrt{x}} \). Le domaine de définition de \(\normalsize f\) est
\(\mathbb{R} \)
\( \mathbb{R}^+ \)
\( \mathbb{R}_0^+ \)
\( \mathbb{R}_0 \)
Déterminez l'ordonnée correspondant au point d'abscisse \( \normalsize x=1\) par la fonction \(\normalsize f(x)=\sqrt{x-2} \).
\(1\)
\(-1\)
\(3\)
Le couple \((0,0)\) appartient au graphe de
\( y=3x^2-2x \)
\( y=\sqrt{x-2} \)
\(y=\frac{6}{x} \)
\( y=x^3+2x^2-4x+1 \)
Soient \(\normalsize f~: \mathbb{R} \to \mathbb{R}~: x \mapsto \sqrt{x}\) et \(\normalsize g~: \mathbb{R} \to \mathbb{R}~: x \mapsto x^2 \). Trouvez \(\normalsize (f \circ g)(x) \).
\( x \)
\( 1 \)
\( x^{1/2} \)
\( |x| \)
Déterminez l'abscisse correspondant au point d'ordonnée \(\normalsize y=-2\) pour la fonction \(\normalsize h(x)=\frac{6}{x} \).
\( -\frac{1}{3} \)
\( -3 \)
\( 3\)
Déterminez les racines de \(y=-x\).
pas de racine
Soit \(\normalsize f(x) = 4 - 3x\) et \(\normalsize g(x) = 2x - 3x^2 \). Calculez \(\normalsize g \circ f \).
\( 9x^2-6x+4 \)
\(27x^2-78x-40 \)
\( -27x^2+66x-40\)
\( 3x-4\)
Déterminez l'abscisse correspondant au point d'ordonnée \(\normalsize y=0\) pour la fonction \(\normalsize h(x)=\frac{6}{x}\) .
\( 6\)
\( \frac{0}{6}\)