Auto-Math
\((3a+2b)^2=\)
\(9a^2+12ab+4b^2\)
\(9a^2+4b^2\)
\(9a^2+4b^2+6ab\)
\(3a^2+2b^2+12ab\)
Quel polynôme faut-il ajouter à \(x+5\) pour obtenir \(4x-1\) ?
\(3x+4\)
\(4x-6\)
\(3x-6\)
\(4-6\)
Factorisez \(x^8+y^8+x^4y^4\)
\((x^4+y^4-x^2y^2)(x^4+y^4+x^2y^2)\)
\((x^2-y^2)^2(x^2+y^2)^2\)
\(x^4(x^4+y^4)+y^8\)
impossible
Effectuez \((-4x^2+2y^3)^2\)
\(16x^4+4y^5-16x^2y^3\)
\(16x^4+4y^6-16x^2y^3\)
\(4y^6-16x^4\)
\(4x^4+2y^6-8x^2y^3\)
Factorisez \(3(2-x)^2-3(x-2)^3\)
\(3(2-x)^2(7-3x)\)
\(3-x\)
\(3(2-x)^2(3-x)\)
\(-1-x\)
Si P est un polynôme de degré 5 et Q un polyôme de degré 3 alors P*Q est un polynôme de degré
\(5\)
\(8\)
\(15\)
\(2\)
Factorisez \(x^3+4x^2+5x+6\)
\((x+3)(x^2+x+2)\)
\((x-3)(x^2+x+2)\)
\((x^3+4x^2)(5x+6)\)
\(x(x^2+4x+5)+6\)
La division de \(x^5+x^4-3x^3-2+3x\) par \( x-x^3-1\) est-elle exacte ?
oui
non
je ne sais pas
Si P est un polynôme de degré 5 et Q un polynôme de degré 3 alors P+Q est un polynôme de degré
\(3\)
Factorisez \(x^7-3x^5+3x^3-x\)
\(x(x-1)^3(x+1)^3\)
\(x(x^2-1)(x^4-3x^2-1)\)
\(x(x^2-1)(x^4-3x^3+x^2+1)\)
\(x^6-3x^4+3x^2-1\)