Auto-Math
Effectuez \((4x^2-3x)+[2-(x+x^2)-3x^3]-[(2x-1)-x^3]\)
\(-4x^3+5x^2-6x+1\)
\(2x^3+3x^2-6x+3\)
\(-2x^3+3x^2-6x+3\)
\(0\)
Effectuez \((3a^2b^3c^2-4a^3c^4)^2\)
\(9a^4b^6c^4-16a^6c^8\)
\(9a^4b^9c^4+16a^9c^{16}-24a^5b^3c^6\)
\(9a^4b^6c^4+16a^6c^8-24a^5b^3c^6\)
\(9a^4b^6c^4+16a^6c^8-24a^6b^3c^8\)
Le reste de la division de \( x-x^3-1-2x^2\) par \(4+2x\) vaut
\(-\frac{1}{2}x^2+\frac{1}{2}\)
\(-2\)
\(-3\)
Effectuez \((-4x^2+2y^3)^2\)
\(16x^4+4y^5-16x^2y^3\)
\(16x^4+4y^6-16x^2y^3\)
\(4y^6-16x^4\)
\(4x^4+2y^6-8x^2y^3\)
La division de \(x^5+x^4-3x^3-2+3x\) par \( x-x^3-1\) est-elle exacte ?
oui
non
je ne sais pas
Factorisez \(x^3+x^2+x+1\)
\(x^2(x+1)\)
\((x+1)(x^2+1)\)
\(x(x^2+x+1)+1\)
\((x+1)(x+1)(x-1)\)
La division de \( x^4-3x+3x^3-1\) par \( x^2-1\) est-elle exacte ?
Quel polynôme faut-il ajouter à \(x+5\) pour obtenir \(42x^2\) ?
\(42x^2\)
impossible
\(37x\)
\(42x^2-x-5\)
Factorisez \(x^7-3x^5+3x^3-x\)
\(x(x-1)^3(x+1)^3\)
\(x(x^2-1)(x^4-3x^2-1)\)
\(x(x^2-1)(x^4-3x^3+x^2+1)\)
\(x^6-3x^4+3x^2-1\)
Le reste de la division de \(x^4-3x+3x^3-1\) par \(x^2-1\) est
\(-1\)
\(1\)
\(x^2+3x+1\)