Auto-Math
L'évaluation du polynôme \(P(x)= -3x^2+x-4\) en \(x=0\) vaut
\(0\)
\(-3x^ 2+x\)
\(-4\)
\(4\)
Le reste de la division de \(x^3+9x^2+11x-21\) par \( x-1\) vaut
\(-24\)
\(1\)
\(x^2+10x+21\)
Le quotient du polynôme \(-2x^4+8x^3-16x+8\) par \(2x^2-4\) vaut
\(-x^2+4x+2\)
\(x^2-4x+2\)
\(-x^2+4x-2\)
Le polynôme \(x^2-6x+5\) est divisible par
\(x+3\)
\(x-3\)
\(x+1\)
\(x-5\)
Effectuez \((2x-1)^3\)
\(8x^3-1\)
\(8x^3-6x^2+6x-1\)
\(1-6x+12x^2-8x^3\)
\(8x^3-12x^2+6x-1\)
\((\sqrt{2}-1)^3=\)
\(5\sqrt{2}-7\)
\(2\sqrt{2}-1\)
\(6\sqrt{2}-7\)
\(7-5\sqrt{2}\)
\(8a^3-b^6=\)
\((2a-b^ 2)(4a^2+2ab^2+b^4)\)
\((2a-b^2)(4a^2+4ab^2+b^4)\)
\((2a-b^2)^3\)
\((2a-b^3)(4a^2+2ab^3+b^6)\)
Effectuez \((2x-3)^2\)
\(4x^2+9-12x\)
\(4x^2+9-6x\)
\(2x^2+9-12x\)
\(4x^2-9\)
\((\sqrt{3}-\sqrt{2})^2=\)
\(5-2\sqrt{5}\)
\(5-\sqrt{6}\)
\(5-2\sqrt{6}\)
\((a^3-b)(a^3+b)=\)
\(a^6+b^2-2a^3b\)
\(a^5-b^2\)
\(a^6+b^2\)
\(a^6-b^2\)