Auto-Math
Effectuez \(-(1+x^3+x^2)(x-1)\)
\(x^4-x^2-x+1\)
\(x^4+2x^3+x^2+x+1\)
\(1-x+x^2+x^3\)
\(-x^4+x^2-x+1\)
\((2x-1)(2x+1)=\)
\(4x^2-4x+1\)
\(4x^2-1\)
\(4x^2+1\)
\(2x^2-1\)
\((\sqrt{2}-1)^3=\)
\(5\sqrt{2}-7\)
\(2\sqrt{2}-1\)
\(6\sqrt{2}-7\)
\(7-5\sqrt{2}\)
\((\sqrt{3}-\sqrt{2})^2=\)
\(5-2\sqrt{5}\)
\(1\)
\(5-\sqrt{6}\)
\(5-2\sqrt{6}\)
Déterminez \(a\), \(b\) et \(c\) pour que les deux polynômes soient égaux, \( P(x)=(a-2)x^3-3x^2-5(3-b)x+c\) et \(Q(x)=2x^3-3x^2+5x-12\).
\(a=4,b=4,c=-12\)
\(a=4, b=-4, c=-12\)
\(a=0,b=2,c=12\)
\(a=2,b=5,c=-12\)
Le polynôme \(x^2-6x+5\) est divisible par
\(x+3\)
\(x-3\)
\(x+1\)
\(x-5\)
Effectuez \((2x-3)^2\)
\(4x^2+9-12x\)
\(4x^2+9-6x\)
\(2x^2+9-12x\)
\(4x^2-9\)
Déterminez \(p\) pour que le reste de la division de \( x^3 +7x^2-px+4\) par \( x+2\) valle 2.
\(p=11\)
\(p=-11\)
\(p=19\)
\(p=-12\)
\((x^2-1)(x^2+1)=\)
\(x^4-2x^2+1\)
\(x^4+1\)
\(x^4-1\)
Factorisez \( (x+y)(3a+2)-(x+y)\)
\((x+y)(3a+1)\)
\((x+y)^2(3a+2)\)
\(3a+2\)
\(3ax+x+3ay+y\)