Auto-Math
Déterminez \(a\), \(b\) et \(c\) pour que les deux polynômes soient égaux, \(P(x)=(a+1)x^2-bx+c\) et \(Q(x)=2ax^2+x+2b\).
\(a=1,b=1,c=2\)
\(a=1,b=-1,c=-2\)
\(a=\frac{1}{2},b=1,c=2\)
\(a=1,b=0,c=0\)
\((2x-1)(2x+1)=\)
\(4x^2-4x+1\)
\(4x^2-1\)
\(4x^2+1\)
\(2x^2-1\)
Effectuez \((x^2+2x+9)-(x^2-4)+(x^2-x)\)
\(3x^2+x+13\)
\(x^2+x+13\)
\(x^2+x+5\)
\(x^2+x+12\)
\((a^3-b)(a^3+b)=\)
\(a^6+b^2-2a^3b\)
\(a^5-b^2\)
\(a^6+b^2\)
\(a^6-b^2\)
L'évaluation du polynôme \(P(x)= x^3+5x^2-4x+2\) en \(x=-3\) vaut
\(32\)
\(-58\)
\(-3\)
\(28\)
Effectuez \((xy-1)^2\)
\(x^2y^2-1-2xy\)
\(x^2y^2+1-2xy\)
\(x^2y^2+1-xy\)
\(x^2y^2-1\)
\((\sqrt{3}-\sqrt{2})^2=\)
\(5-2\sqrt{5}\)
\(1\)
\(5-\sqrt{6}\)
\(5-2\sqrt{6}\)
\(4x^2-9y^2=\)
\((4x-9y)(4x+9y)\)
\((2x-3y)(2x+3y)\)
\((2x-3y)^2\)
\(-5x^2y^2\)
Factorisez \( (x+y)(3a+2)-(x+y)\)
\((x+y)(3a+1)\)
\((x+y)^2(3a+2)\)
\(3a+2\)
\(3ax+x+3ay+y\)
Le polynôme \(x^2-6x+5\) est divisible par
\(x+3\)
\(x-3\)
\(x+1\)
\(x-5\)