Auto-Math
Si \(a=0,2\), \(b=-0,1\), \(c=-0,5\) et \(d=2\) Calculez \(c(a+b)^2+d^2\).
\(3,5\)
\(3,975\)
\(3,995\)
\(4,005\)
Simplifiez l'expression \(\displaystyle{ \frac{(2a^2bx)(-3a^3b^2x^3)}{12a^5bx^2}}\).
\(-\dfrac{abx}{2}\)
\(-\dfrac{x^2}{3}\)
\(\dfrac{2-3abx^2}{12a^3x}\)
\(-\dfrac{b^2x^2}{2}\)
Calculez \(\left(\dfrac{4}{-15}-\dfrac{7}{-18}\right)-\left(\dfrac{1}{15}-\dfrac{1}{9}\right)\).
\(-\dfrac{1}{18}\)
\(\dfrac{1}{9}\)
\(0\)
\(\dfrac{1}{6}\)
Calculez \(\dfrac{\sqrt{6}}{2\sqrt{3}-5\sqrt{2}}\).
\(2\sqrt{3}+\dfrac{15\sqrt{2}}{2}\)
\(-\dfrac{1}{19}(3\sqrt{2}+5\sqrt{3})\)
\(-\dfrac{3}{2}\)
\(\dfrac{3\sqrt{2}}{11}+\dfrac{5\sqrt{3}}{11}\)
Calculez \(\left(\dfrac{1}{a}+1\right)/(1-a^2)\).
\(\dfrac{1}{1-a}\)
\(\dfrac{(1-a)(1+a)^2}{a}\)
\(\dfrac{1}{a(1-a)}\)
\(\dfrac{2}{a(1-a^2)}\)
Calculez \(\dfrac{a-b}{b}-\dfrac{a+b}{2b}-1\).
\(\dfrac{a-3b-1}{2b}\)
\(\dfrac{ab-b^2-a-3b}{2b}\)
\(\dfrac{a-3b}{2b}\)
\(\dfrac{a-5b}{2b}\)
Calculez \(\left(\dfrac{5}{16}\left(\dfrac{3}{10}+\dfrac{1}{2}\right)-\dfrac{1}{8}\right)\left(-\dfrac{5}{2}\right)\).
\(-\dfrac{5}{2}\)
\(-\dfrac{5}{16}\)
\(-\dfrac{19}{8}\)
Ecrivez l'expression \(\displaystyle{\frac{1}{5\sqrt[3]{25}}}\) sous forme de puissance.
\(5^{-5/3}\)
\(5^{-10/3}\)
\(5^{3/5}\)
impossible
Simplifiez l'expression \(\displaystyle{\sqrt[n]{\frac{a^{2n+1}}{b^{n+1}}}}\).
\(\displaystyle{\frac{b^{n^2+n}}{a^{2n^2+n}}}\)
\(\displaystyle{\frac{a^2\sqrt[n]{a}}{b\sqrt[n]{b}}}\)
\(\displaystyle{\frac{b^{2n+1}}{a^{3n+1}}}\)
\(\displaystyle{\frac{a^2+\sqrt[n]{a}}{b+\sqrt[n]{b}}}\)
Résolvez l'équation \(|x+3|=|2x+1|\).
\(2\mbox{ et }-\frac{4}{3}\)
\(2\)
\(\frac{4}{3}\)
\(\emptyset\)