Auto-Math
L'opposé de \(x+y-1\) est
\(-x-y+1\)
\(-x+y-1\)
\(-x-y-1\)
\(\frac{1}{x+y-1}\)
Calculez \(36^{5/2}\).
impossible
\(\pm 36^{5}\)
\(\frac{1}{\sqrt[5]{36^{2}}}\)
\(6^5\)
Calculez \(\dfrac{7}{12}+\dfrac{5}{18}\).
\(1\)
\(\dfrac{1}{3}\)
\(\dfrac{31}{36}\)
\(\dfrac{2}{5}\)
Ecrivez avec des valeurs absolues l'intervalle \([\,2,10\,]\).
\(\vert x\vert\leq 4\)
\(\vert x-2\vert\leq 10\)
\(\vert x\vert\leq 10\)
\(\vert x-6\vert\leq 4\)
L'opposé de \( x-y+z\) est
\(-x-y-z\)
\(z-x+y\)
\(-x+y-z\)
\(\frac{1}{x-y+z}\)
Elevez au carré \(\sqrt{2}-\sqrt{3}\).
\(5-2\sqrt{6}\)
\(5-\sqrt{6}\)
\(-1\)
Calculez \(\dfrac{11}{12}-\dfrac{4}{15}\).
\(-\dfrac{7}{3}\)
\(\dfrac{13}{20}\)
\(\dfrac{7}{60}\)
\(\dfrac{2}{3}\)
Calculez \(\displaystyle{ \frac{\sqrt{48}\sqrt{15}\sqrt{6}}{\sqrt{10}\sqrt{20}}}\).
\(\dfrac{6\sqrt{3}}{\sqrt{5}}\)
\(\dfrac{4\sqrt{3}}{\sqrt{5}}\)
\(\dfrac{\sqrt{23}}{\sqrt{10}}\)
\(12\)
Ecrivez sans le symbole de valeur absolue l'expression \(|x+1|\) si \(x<-1\).
\(-x-1\)
\(x+1\)
\(x-1\)
Calculez \(\sqrt[3]{-125}\).
\(\frac{1}{5}\)
\(-\frac{1}{125^{3}}\)
\(-5\)