Auto-Math
Calculez \((a^{1/5})^{-5}\).
\(\frac{1}{a}\)
\(-a\)
\(\frac{1}{a^{24/5}}\)
\(\frac{1}{a^{25}}\)
Ecrivez sans valeur absolue \(|x-1|>2\).
\(]-1,3[\)
\(]3;+\infty[\)
\(]-1;+\infty[\)
\(]-\infty;-1[\, \cup\, ]3;+\infty[\)
Calculez \(\dfrac{7}{12}+\dfrac{5}{18}\).
\(1\)
\(\dfrac{1}{3}\)
\(\dfrac{31}{36}\)
\(\dfrac{2}{5}\)
Calculez \(\dfrac{5}{30}-\dfrac{2}{45}+\dfrac{11}{75}\).
\(\dfrac{121}{450}\)
\(\dfrac{7}{30}\)
\(\dfrac{7}{225}\)
\(\dfrac{29}{75}\)
Calculez \(\sqrt[3]{-125}\).
\(\frac{1}{5}\)
impossible
\(-\frac{1}{125^{3}}\)
\(-5\)
L'opposé de \(x+y-z\) est
\(-x-y-z\)
\(z-x-y\)
\(x+y+z\)
\(\frac{1}{x+y-z}\)
Ecrivez sans le symbole de valeur absolue l'expression \(|5-23|\).
\(-18\)
\(18\)
\(5\)
\(23\)
Résolvez l'inéquation \(|3x+2|\geq 4\).
\([\frac{2}{3};+\infty[\)
\(]-\infty;\frac{2}{3}]\cup[-2;+\infty[\)
\(]-\infty;-2]\cup[\frac{2}{3};+\infty[\)
\([-2,\frac{2}{3}]\)
Simplifiez l'expression \(a^2(a^{-3} + a^{-2})\).
\(\frac{1}{a^6}+\frac{1}{a^4}\)
\(1+\frac{1}{a}\)
\(\frac{1}{a^{10}}\)
Calculez \(\displaystyle{ \frac{\sqrt{48}\sqrt{15}\sqrt{6}}{\sqrt{10}\sqrt{20}}}\).
\(\dfrac{6\sqrt{3}}{\sqrt{5}}\)
\(\dfrac{4\sqrt{3}}{\sqrt{5}}\)
\(\dfrac{\sqrt{23}}{\sqrt{10}}\)
\(12\)