Logarithmes et exponentielles : Test de niveau 2

Trouver l'ensemble \(S \) des \(x\) tels que \(e^{x} + 3e^{-x} > 4\).

Trouver l'ensemble \(S \) des \(x\) tels que \(\ln(x^2 + x - 1) = \ln(x)\).

Parmis les graphes suivants, lequel correspond à celui de la fonction \( f(x) = \dfrac{e^x + e^{-x}}{2}\) ?

Trouver l'ensemble \(S \) des \(x\) tels que \(e^{3x} + e^{2x} - 2e^x = 0\).

Calculez \(\displaystyle\lim_{\stackrel{x \rightarrow 0}{x > 0}} x\ln(x) \).

Trouver l'ensemble \(S \) des \(x\) tels que \( \log_{10}(3x + 7) = 2 \log_{10}(5)\).

Trouver l'ensemble \(S \) des \(x\) tels que \( x \leq 0 \mbox{ et } e^{x} = x\).

Trouver l'ensemble \(S \) des \(x\) tels que \(\ln(x) + \ln(x + 1) = 0\).

Calculez \(\displaystyle\lim_{\stackrel{x \rightarrow 0}{x > 0}} \ln(\sin(x))\sin(x) \).

Trouver l'ensemble \(S \) des \(x\) tels que \(\ln^2(x) - 2 \ln(x) + 1 = 0\).