Logarithmes et exponentielles : Test de niveau 2

Trouver l'ensemble \(S \) des \(x\) tels que \(2\ln(x) = \ln(2x) \).

Trouver l'ensemble \(S \) des \(x\) tels que \( \log_{10}(3x + 7) = 2 \log_{10}(5)\).

Calculez les deux limites suivantes :

\(l_1 :=\displaystyle \lim_{\stackrel{x \rightarrow 0}{x > 0}} e^{1/x}\)

et

\(l_2 :=\displaystyle \lim_{\stackrel{x \rightarrow 0}{x < 0}} e^{1/x}.\)

Trouver l'ensemble \(S \) des \(x\) tels que \(e^{2x} - 2 e^x + 1 = 0 \).

Trouver l'ensemble \(S \) des \(x\) tels que \(\ln(-x) + \ln(x) = 0\).

Trouver l'ensemble \(S \) des \(x\) tels que \(e^{2x} + 2 e^x + 1 = 0\).

Trouver l'ensemble \(S \) des \(x\) tels que \(e^x + e^{-x} = 2\).

Soit \(p(x) = a_nx^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0\) un polynôme de degré plus grand que 1 (\(a_n \neq 0 \)). Que peut-on dire de la limite  \(\displaystyle\lim_{x \rightarrow +\infty} e^{-x} p(x)\) ?

Parmis les graphes suivants, lequel correspond à celui de la fonction \( f(x) = \dfrac{e^x + e^{-x}}{2}\) ?

Trouver l'ensemble \(S \) des \(x\) tels que \(e^{3x} + e^{2x} - 2e^x = 0\).