Logarithmes et exponentielles : Test de niveau 2

Trouver l'ensemble \(S \) des \(x\) tels que \(2\ln(x) = \ln(2x) \).

Trouver l'ensemble \(S \) des \(x\) tels que \(\ln(2x^2 + x) = 0 \).

Calculez \(\displaystyle\lim_{x \rightarrow +\infty} \frac{\ln(x)}{x} \).

Trouver l'ensemble \(S \) des \(x\) tels que \(\log_2(x) = 2\log_2(3) - \log_2(x - 5) + 2\)

Calculez \(\displaystyle\lim_{x\to 0}(1+x)^{1/x}\) .

Parmis les graphes suivants, lequel correspond à celui de la fonction \( f(x) = \dfrac{e^x + e^{-x}}{2}\) ?

Trouver l'ensemble \(S \) des \(x\) tels que \(\ln(x^2 + x - 1) = \ln(x)\).

Trouver l'ensemble \(S \) des \(x\) tels que \(e^x + e^{-x} = 2\).

Trouver l'ensemble \(S \) des \(x\) tels que \(e^{2x} - 2 e^x + 1 = 0 \).

Trouver l'ensemble \(S \) des \(x\) tels que \(e^{x} + 3e^{-x} > 4\).