Fonctions : Test de niveau 1

Déterminez les racines de la fonction \(y=(x+3)(x-1)\).

Déterminez l'ordonnée à l'origine de \(\normalsize y=x^2+1 \).

Déterminez l'abscisse correspondant au point d'ordonnée \(\normalsize y=0\) pour la fonction \(\normalsize f(x)=\sqrt{x-2} \).

Soient \(\normalsize f~: \mathbb{R} \to \mathbb{R}~: x \mapsto \frac{1}{\sqrt{x}}\) et \(\normalsize g~: \mathbb{R} \to \mathbb{R}~: x \mapsto x^2-2 \). Trouvez \(\normalsize (f \cdot g)(x) \).

Déterminez le domaine de la fonction \(\normalsize f(x)=\sqrt{x-2} \).

Soient \(\normalsize f~: \mathbb{R} \to \mathbb{R}~: x \mapsto \frac{1}{\sqrt{x}}\) et \(\normalsize g~: \mathbb{R} \to \mathbb{R}~: x \mapsto x^2-2 \). Trouvez \(\normalsize (f \circ g)(x) \).

Soit \(\normalsize f(x) =\frac{1}{x}\) et \(\normalsize g(x) = \sqrt{x^2 + 1} \). Calculez \(\normalsize g \circ f \).

Soient \(\normalsize f(x) = \frac{1}{3}x^2\) et \(\normalsize g(x) = \sqrt x \). Calculez \(\normalsize ( f \cdot g )(9) \).

Soient \(\normalsize f~: \mathbb{R} \to \mathbb{R}~: x \mapsto \frac{1}{\sqrt{x}}\) et \(\normalsize g~: \mathbb{R} \to \mathbb{R}~: x \mapsto x^2-2 \). Trouvez \(\normalsize (g \circ f)(x) \).

Soient \(\normalsize f~: \mathbb{R} \to \mathbb{R}~: x \mapsto \sqrt{x}\) et \(\normalsize g~:\mathbb{R} \to \mathbb{R}~: x \mapsto x^2 \). Trouvez \(\normalsize (g \circ f)(x) \).