Auto-Math
Le domaine de définition de la fonction \(\normalsize g(x)=\frac{1}{x^2-x}\) est
\(\mathbb{R}\setminus\{0,1\}\)
\(\mathbb{R}_0 \)
\(\mathbb{R}\setminus\{1\} \)
\( ]0,1[ \)
Soient \(\normalsize f~: \mathbb{R} \to \mathbb{R}~: x \mapsto \frac{1}{\sqrt{x}}\) et \(\normalsize g~: \mathbb{R} \to \mathbb{R}~: x \mapsto x^2-2 \). Trouvez \(\normalsize (f+g)(x) \).
\(\frac{x^2}{\sqrt{x}}-\frac{2}{\sqrt{x}} \)
\( \frac{1}{\sqrt{x}}+x^2-2 \)
\(x^2-\sqrt{x}-2\)
\( \frac{1+x^2-2}{\sqrt{x}} \)
Déterminez les racines de \(\normalsize y=x^2+1\) .
\(-1\)
\(1\)
\(-1\) et \(1\)
pas de racine
Déterminez l'abscisse correspondant au point d'ordonnée \(\normalsize y=1\) pour la fonction \(\normalsize g(x)=3x^2-2x \).
\(1\) et \(-\frac{1}{3} \)
\( -1\) et \(\frac{1}{3} \)
\( \frac{2}{3} \)
impossible
Déterminez les racines de \(\normalsize y=4-x^2 \).
\(0\)
\(4\)
\(-2\) et \(2\)
Soit \(\normalsize f(x) = 4 - 3x\) et \(\normalsize g(x) = 2x - 3x^2 \). Calculez \(\normalsize g \circ f \).
\( 9x^2-6x+4 \)
\(27x^2-78x-40 \)
\( -27x^2+66x-40\)
\( 3x-4\)
Déterminez l'abscisse correspondant au point d'ordonnée \(\normalsize y=0\) pour la fonction \(\normalsize f(x)=\sqrt{x-2} \).
\(-2\)
\(2\)
Soient \(\normalsize f(x) = \frac{1}{3}x^2\) et \(\normalsize g(x) = \sqrt x \). Calculez \(\normalsize ( f - g )(4) \).
\(14 \)
\( \frac{10}{3} \)
\( \frac{14}{3} \)
\( \frac{18}{3} \)
Soit \(\normalsize f(x) = 2x - 3\) et \(\normalsize g(x) = 3x + 2 \). Calculez \(\normalsize g \circ f \).
\(5x+5\)
\(6x+5\)
\(6x+7\)
\(6x-7\)
Déterminez l'abscisse correspondant au point d'ordonnée \(\normalsize y=0\) pour la fonction \(\normalsize g(x)=3x^2-2x \).
\( \frac{3}{2} \)
\(0\) et \(\frac{2}{3}\)
\( 0\) et \(\frac{3}{2} \)