Auto-Math
La traduction en français de la proposition "\(\exists\, x\in \mathbb{Q},\forall y\in \mathbb{Q}\, :\, x\neq y^2\)" est
Aucun rationnel n'a de racine carrée rationnelle
Il existe un rationnel qui n'a pas de racine carrée rationnelle
Il y a un rationnel qui n'est pas une racine carrée
Il y a un rationnel qui n'a pas de carré
La négation de la proposition "\(\forall x\in\mathbb{R}_0\, :\, \frac{1}{x}\in\mathbb{R}_0\)" est
\(\forall x\not\in\mathbb{R}_0\, :\, \frac{1}{x}\neq 0\)
\(\exists\, x\in\mathbb{R}_0\, :\, \frac{1}{x}\neq 0\)
\(\exists\, x\not\in\mathbb{R}_0\, :\, \frac{1}{x}\not\in\mathbb{R}_0\)
\(\exists\, x\in\mathbb{R}_0\, :\, \frac{1}{x}=0\)
Soit \(B=\{1,2,3\}\). La proposition suivante est-elle vraie ou fausse : "\(\exists\, x\in B,\, \exists\, y\in B,\, \forall z\in B\, :\, x^ 2+y^2<2z^ 2\)"?
Vrai
Faux
Je ne sais pas
La négation de la proposition "\( \forall x\in\mathbb{N},\, \forall y\in\mathbb{N}\, :\, x+y>0\)" est
\(\exists\, x\in\mathbb{N},\, \exists\, y\in\mathbb{N}\, :\, x+y<0\)
\(\exists\, x\in\mathbb{N},\, \exists\, y\in\mathbb{N}\, :\, x+y\leq 0\)
\(\forall x\in\mathbb{N},\, \forall y\in\mathbb{N}\, :\, x+y<0\)
\(\exists\, x\not\in\mathbb{N},\, \exists\, y\not\in\mathbb{N}\, :\, x+y\leq 0\)
La réciproque de "\(x\in\mathbb{N}\Rightarrow x\geq 0\)" est
\(x\geq 0\Rightarrow x\in\mathbb{N}\)
\(x\not\in\mathbb{N}\Rightarrow x<0\)
\(x<0\Rightarrow x\in\mathbb{N}\)
\(x<0\Rightarrow x\not\in\mathbb{N}\)
La négation de la proposition "Aucun élève de la classe n'est absent'' est
Tous les élèves de la classe sont présents
Tous les élèves de la classe sont absents
Il y a des élèves de la classe qui sont absents
Aucun élève de la classe n'est présent
La proposition "\(((P\Rightarrow Q)\wedge (Q\Rightarrow R))\Rightarrow (P\Rightarrow R)\)" est une tautologie.
Soit A et B deux ensembles non vides. L'implication "\(A\subseteq B\Rightarrow\forall x\in B\, :\, x\in A\)" est-elle vraie ou fausse ?
"\(P\Leftrightarrow Q\)" n'est pas équivalente à
\(Q\Leftrightarrow P\)
\(\neg P\Leftrightarrow\neg Q\)
\((P\Rightarrow Q)\wedge (Q\Rightarrow P)\)
\((P\Rightarrow Q)\vee(Q\Rightarrow P)\)
La traduction mathématique de la proposition "Si a et b sont deux entiers naturels, il existe un multiple de a qui est supérieur à b'' est
\(\forall a\in\mathbb{N},\, \forall b\in\mathbb{N}, \exists\, k\in\mathbb{N}\, :\, ka\leq b\)
\(\exists\, k\in\mathbb{N},\, \forall a\in\mathbb{N},\, \forall b\in\mathbb{N}\, :\, ka\geq b\)
\(\forall a\in\mathbb{N},\, \forall b\in\mathbb{N}, \exists\, k\in\mathbb{N}\, :\, ka\geq b\)
\(\forall a\in\mathbb{N},\, \exists\, b\in\mathbb{N}\, :\, a\geq b\)