Auto-Math
La négation de la proposition "Les trois nombres réels a, b et c sont négatifs'' est
Il y a au moins un des trois nombres réels a, b ou c qui est positif
Les trois nombres réels a, b et c sont positifs
Aucun des trois nombres réels a, b et c n'est négatif
Il y a au moins un des trois nombres réels a, b ou c qui est nul
Soit \(B=\{1,2,3\}\). La proposition suivante est-elle vraie ou fausse : "\(\exists\, x\in B,\, \exists\, y\in B,\, \forall z\in B\, :\, x^ 2+y^2<2z^ 2\)"?
Vrai
Faux
Je ne sais pas
La traduction mathématique de la proposition "Si a et b sont deux entiers naturels, il existe un multiple de a qui est supérieur à b'' est
\(\forall a\in\mathbb{N},\, \forall b\in\mathbb{N}, \exists\, k\in\mathbb{N}\, :\, ka\leq b\)
\(\exists\, k\in\mathbb{N},\, \forall a\in\mathbb{N},\, \forall b\in\mathbb{N}\, :\, ka\geq b\)
\(\forall a\in\mathbb{N},\, \forall b\in\mathbb{N}, \exists\, k\in\mathbb{N}\, :\, ka\geq b\)
\(\forall a\in\mathbb{N},\, \exists\, b\in\mathbb{N}\, :\, a\geq b\)
Soit \(B=\{1,2,3\}\). La proposition suivante est-elle vraie ou fausse : "\(\exists\, x\in B,\, \forall y\in B\, :\, x^ 2<y+1\)" ?
La négation de la proposition "Aucun élève de la classe n'est absent'' est
Tous les élèves de la classe sont présents
Tous les élèves de la classe sont absents
Il y a des élèves de la classe qui sont absents
Aucun élève de la classe n'est présent
La proposition "\(((P\Rightarrow Q)\wedge (Q\Rightarrow R))\Rightarrow (P\Rightarrow R)\)" est une tautologie.
La proposition "\(((P\vee Q)\wedge R)\Leftrightarrow(P\vee(Q\wedge R))\)" est une tautologie.
La négation de la proposition "Tous les éléments de l'ensemble A sont des réels positifs" est
\(\exists\, x\in A\, :\, x<0\)
\(\exists\, x\in A\, :\, x=0\)
\(\forall x\in A\, :\, x<0\)
\(\exists\, x\not\in A\, :\, x\in\mathbb{R}^-\)
La traduction en français de la proposition "\(\exists\, x\in \mathbb{Q},\forall y\in \mathbb{Q}\, :\, x\neq y^2\)" est
Aucun rationnel n'a de racine carrée rationnelle
Il existe un rationnel qui n'a pas de racine carrée rationnelle
Il y a un rationnel qui n'est pas une racine carrée
Il y a un rationnel qui n'a pas de carré
Soit A et B deux ensembles non vides. L'implication "\(A\subseteq B\Rightarrow\exists\, x\in A\, :\, x\in B\)" est-elle vraie ou fausse ?