Auto-Math
La négation de la proposition "\(\forall x\in\mathbb{R},\exists\, y\in\mathbb{R}\, :\, x+y=0\)" est
\(x\not\in\mathbb{R},\forall y\not\in\mathbb{R}\, :\, x+y\neq 0\)
\(\exists\, y\in\mathbb{R},\forall x\in\mathbb{R}\, :\, x+y\neq 0\)
\(\exists\, x\in\mathbb{R},\forall y\in\mathbb{R}\, :\, x+y\neq 0\)
\(\exists\, x\in\mathbb{R},\forall y\in\mathbb{R}\, :\, x+y=0\)
La traduction mathématique de la proposition "Tous les éléments de l'ensemble A sont des réels positifs'' est
\(\forall x\in\mathbb{R}^+\,:\, x\in A\)
\(A\subset\mathbb{R}^+\)
\(\mathbb{R}^+\subset A\)
\(A\in\mathbb{R}^+\)
Soit A et B deux ensembles non vides. L'implication "\(A\subseteq B\Rightarrow\forall x\in A\, :\, x\in B\)" est-elle vraie ou fausse ?
Vrai
Faux
Je ne sais pas
Pour quelles valeurs de vérité de P et Q la proposition "\(\neg P\Rightarrow(P\wedge Q)\)" est-elle vraie ?
toujours vraie
P fausse et Q vraie
P vraie
P fausse et Q fausse
Soit A et B deux ensembles non vides. L'implication "\(A\subseteq B\Rightarrow\exists\, x\in A\, :\, x\in B\)" est-elle vraie ou fausse ?
La négation de la proposition "\( \forall x\in\mathbb{N},\, \forall y\in\mathbb{N}\, :\, x+y>0\)" est
\(\exists\, x\in\mathbb{N},\, \exists\, y\in\mathbb{N}\, :\, x+y<0\)
\(\exists\, x\in\mathbb{N},\, \exists\, y\in\mathbb{N}\, :\, x+y\leq 0\)
\(\forall x\in\mathbb{N},\, \forall y\in\mathbb{N}\, :\, x+y<0\)
\(\exists\, x\not\in\mathbb{N},\, \exists\, y\not\in\mathbb{N}\, :\, x+y\leq 0\)
Soit A et B deux ensembles non vides. L'implication "\(A\subseteq B\Rightarrow\forall x\in B\, :\, x\in A\)" est-elle vraie ou fausse ?
La proposition "\(((P\wedge Q)\vee R)\Leftrightarrow(P\wedge(Q\vee R))\)" est une tautologie.
La réciproque de "Si f est dérivable alors f est continue" est
f est dérivable et pas continue
Si f est dérivable alors f n'est pas continue
Si f est continue alors f est dérivable
Si f n'est pas continue alors f n'est pas dérivable
La contraposée de "Si f est dérivable alors f est continue'' est
f est continue si et seulement si f est dérivable