Auto-Math
Ecrivez la phrase suivante sous forme de proposition composée et déterminez si elle est vraie ou fausse. Précisez les propositions simples P et Q que vous utilisez. "2 + 2 = 5 si et seulement si 4 + 4 = 10."
Vrai
Faux
Je ne sais pas
La négation de la proposition "\(x\in\mathbb{Z}\)" est
\(x\subset\mathbb{Z}\)
\(x\in\mathbb{N}\)
\(x\not\in\mathbb{Z}\)
\(x\in\mathbb{R}\)
Soit \(A=\{2,3,4,5,6,7,8,9\}\) et \(B=\{1,2,3\}\). La proposition suivante est-elle vraie ou fausse : \("\forall x\in A\, :\, x^ 2>1"\)?
La négation de la proposition "\(\forall x\in\mathbb{N}\, :\, x>1\)" est
\(\exists\, x\not\in\mathbb{N}\, :\, x\leq 1\)
\(\exists\, x\in\mathbb{N}\, :\, x\leq 1\)
\(\forall x\in\mathbb{N}\, :\, x\leq 1\)
\(\exists\, x\in\mathbb{N}\, :\, x< 1\)
La proposition "\(((P\Rightarrow Q)\wedge(Q\Rightarrow P))\Leftrightarrow(P\Leftrightarrow Q)\)" est une tautologie.
La proposition "Tout carré est un rectangle'' est-elle vraie ou fausse ?
Soit \(A=\{0,2,4,6\}\) et \(B=\{0,2,4\}\). Quelle est la proposition correcte ?
\(\forall x\in A\, :\, x\in B\)
\(\exists\, x\in B\, :\, x\in A\)
\(\forall x\in\mathbb{R}\, :\, x\in A\)
\(\forall x\in \mathbb{R}\, :\, x\in (A\cap B)\)
La traduction mathématique de la proposition "Tout nombre réel admet une racine carrée complexe" est
\(\forall x\in\mathbb{R},\, \exists\, y\in\mathbb{C}\, :\, x^2=y\)
\(\forall x\in\mathbb{R},\, \exists\, y\in\mathbb{C}\, :\, x=y^2\)
\(\exists\, y\in\mathbb{C},\, \forall x\in\mathbb{R}\, :\, x=y^2\)
\(\forall x\in\mathbb{R}\, :\, x=c^2\)
Ecrivez la phrase suivante sous forme de proposition composée et déterminez si elle est vraie ou fausse. Précisez les propositions simples P et Q que vous utilisez. "Si 3 + 2 = 7, alors 4 + 4 = 8."
La traduction mathématique de la proposition "Tout nombre naturel est un entier" est
\(\mathbb{Z}\subset\mathbb{N}\)
\(\forall x\in\mathbb{Z}\, :\, x\in\mathbb{N}\)
\(\mathbb{N}\subset\mathbb{Z}\)
\(\forall x\, :\, \mathbb{N}\cap\mathbb{Z}=\{x\}\)