Auto-Math
Déterminez à quelle fonction correspond le graphe suivant.
\( y=x+3 \)
\( y=x^2-3 \)
\(y=x^2+6x+9 \)
\(y=x^2-6x+9 \)
On considère les fonctions \(\normalsize f(x)=1+x^2\) et \(\normalsize g(x)=\sqrt{4x+2} \). Calculez la fonction \(\normalsize (f\circ g\circ f)(x)\) .
\(\sqrt{16x+14} \)
\( x^2+7 \)
\( 7+4x^2 \)
impossible
\( y=-(x-1)^2 \)
\( y=(x-\frac{9}{2})(x-\frac{3}{2}) \)
\( y=\cos x-1 \)
\(y=\sin{x}-1 \)
Ecrivez la formule de la fonction dont l'ordonnée vaut le carré de la somme de l'abscisse et de 1.
\( y=x^2+1\)
\(y^2=x+1 \)
\(x=(y+1)^2 \)
\( y=(x+1)^2 \)
Ecrivez la formule de la fonction dont le produit de l'abscisse et de l'opposé de l'ordonnée vaut 2.
\(y=\frac{x}{2} \)
\( y=-2x \)
\(x=-2y \)
\( y=-\frac{2}{x} \)
Soient \(\normalsize f(x) = \frac{1}{3}x^2\) et \(\normalsize g(x)= \sqrt x \). Calculez \(\normalsize ( g \circ f )(9) \).
\(3\sqrt{3} \)
\(3\)
\(6\)
\( 81\)
Ecrivez la fonction \(\normalsize h(x) = \sqrt{1 + \sqrt x}\) comme la composée \(\normalsize g \circ f\) où \(\normalsize f\) et \(\normalsize g\) sont deux fonctions simples, aucune n'étant la fonction identité.
\( f(x)=1+\sqrt{x} \\ g(x)=\sqrt{1+x} \)
\(f(x)=\sqrt{1+x} \\ g(x)=\sqrt{x} \)
\( f(x)=1+\sqrt{x}\\g(x)=\sqrt{x} \)
\( f(x)=\sqrt{x} \\g(x)=1+\sqrt{x} \)
La fonction \(\normalsize f(x)=1-\frac{x}{\sqrt{x^2+2}}\) est-elle paire ou impaire ?
paire
impaire
ni paire ni impaire
Soient les fonctions \(f(x)= x^2 - 2 \vert x \vert\) et \(g(x)=x^2 + 1 \). Calculez \((g \circ f)(-4) \).
65
265
337
401
Ecrivez la fonction \(\normalsize \frac{2(y-1)}{5}=x\) sous la forme \(\normalsize y=f(x)\) .
\( y=\frac{5}{2}x+1 \)
\( y=\frac{5}{2}x+\frac{1}{2} \)
\( y=\frac{5}{2}x+2 \)
\( y=\frac{5}{2}x+\frac{5}{2} \)