Fonctions : Test de niveau 2

Soient les fonctions \(f(x)= x^2 - 2 \vert x \vert\)  et \(g(x)=x^2 + 1\) . Calculez \((f \circ g)(-2) \).

Soit \(\normalsize f: \mathbb{R} \to \mathbb{R}: x \mapsto 1-\frac{x}{\sqrt{x^2+2}} \). Quel est le domaine de définition de \(\normalsize f\)  ?

Si \(x\)  et \(y\)  représentent les dimensions d'un rectangle de périmètre 24 cm, donnez la fonction qui exprime \(y\) en fonction de \(x\).

Ecrivez la fonction \(\normalsize \frac{2(y-1)}{5}=x\)  sous la forme \(\normalsize y=f(x)\) .

Soient les fonctions \(\normalsize f(x)= x^2 - 2 \vert x \vert\) et \(\normalsize g(x)=x^2 + 1 \). Calculez \(\normalsize (g \circ f)(3) \).

Ecrivez la formule de la fonction dont l'ordonnée vaut le double de l'abscisse, augmenté de 3.

Soient les fonctions \(\normalsize g(x) = x^2 \), \(\normalsize h(x) = 2^x \), \(\normalsize s(x) = \sin x \). Effectuez la décomposition de la fonction \(\normalsize f(x) = \sin 2^x\) en termes des fonctions \(\normalsize g \), \(\normalsize h\) et \(\normalsize s \).

Ecrivez la formule de la fonction dont l'ordonnée vaut le carré de la somme de l'abscisse et de 1.

Déterminez le domaine de définition de la fonction \(\normalsize f(x)=\frac{\sin{(\sin{x})}}{\sin{x}} \).

Trouvez \(\normalsize f\circ g\circ h\) pour \(\normalsize f(x)=\frac{x}{x+1} \), \(\normalsize g(x)=x^{10}\) et \(\normalsize h(x)=x+3 \).