Auto-Math
Déterminez les points d'abscisse \(3\).
\(x=2\)
\(x=4\)
\( y=2\)
\(y=4\)
Déterminez à quelle fonction correspond le graphe suivant.
\( y=x+3 \)
\( y=x^2-3 \)
\(y=x^2+6x+9 \)
\(y=x^2-6x+9 \)
Soit \(\normalsize f: \mathbb{R} \to \mathbb{R}: x \mapsto 1-\frac{x}{\sqrt{x^2+2}} \). Quel est le domaine de définition de \(\normalsize f\) ?
\( \mathbb{R} \)
\(\mathbb{R}\setminus\{-2,2\} \)
\(\mathbb{R}\setminus\{-\sqrt{2},\sqrt{2}\} \)
\( ]-\infty;-\sqrt{2}[\, \cup\, ]\sqrt{2};+\infty[ \)
Ecrivez la fonction \(\normalsize h(x) = \sqrt{1 + \sqrt x}\) comme la composée \(\normalsize g \circ f\) où \(\normalsize f\) et \(\normalsize g\) sont deux fonctions simples, aucune n'étant la fonction identité.
\( f(x)=1+\sqrt{x} \\ g(x)=\sqrt{1+x} \)
\(f(x)=\sqrt{1+x} \\ g(x)=\sqrt{x} \)
\( f(x)=1+\sqrt{x}\\g(x)=\sqrt{x} \)
\( f(x)=\sqrt{x} \\g(x)=1+\sqrt{x} \)
L'aire d'un triangle mesure 6 cm\( \normalsize ^2 \). Donnez une relation qui exprime la base \(y\) en fonction de la hauteur \(x\).
\( y=12-x \)
\( y=\dfrac{x}{12} \)
\( y=\dfrac{6}{x} \)
\( y=\dfrac{12}{x} \)
Soient \(\normalsize f(x) = \frac{1}{3}x^2\) et \(\normalsize g(x)= \sqrt x \). Calculez \(\normalsize ( f \circ g )(4) \).
\(\frac{4}{3} \)
\( \frac{4\sqrt{3}}{3} \)
\( \frac{32}{3} \)
\(\frac{18}{3} \)
Soient les fonctions \(f(x)= x^2 - 2 \vert x \vert\) et \(g(x)=x^2 + 1 \). Calculez \((g \circ f)(-4) \).
65
265
337
401
La fonction\( \normalsize f(x) = x^2 - \frac{1}{x}\) est
paire
impaire
ni paire ni impaire
Soient les fonctions \(\normalsize g(x) = x^2 \), \(\normalsize h(x) = 2^x \), \(\normalsize s(x) = \sin x \). Effectuez la décomposition de la fonction \(\normalsize f(x) = 2^{\sin x}\) en termes des fonctions \(\normalsize g \), \(\normalsize h\) et \(\normalsize s \).
\( (h\circ s)(x) \)
\( (s\circ h)(x) \)
\((g\circ s)(x) \)
\((s\circ s)(x) \)
\(y=-x+1\)
\(y=x+1\)
\(y=x-1\)
\(x=y+1\)