Fonctions : Test de niveau 2

Ecrivez la fonction \(\normalsize \frac{1-y}{3}=\frac{x+2}{2}\)  sous la forme \(\normalsize y=f(x)\) .

On considère les fonctions \(\normalsize f(x)=1+x^2\)  et \(\normalsize g(x)=\sqrt{4x+2} \). Calculez la fonction \(\normalsize (f\circ g\circ f)(x)\) .

Déterminez à quelle fonction correspond le graphe suivant.

La fonction \(\normalsize f(x)=1-\frac{x}{\sqrt{x^2+2}}\)  est-elle paire ou impaire ?

Le volume d'un parallélipipède rectangle de 3 cm de hauteur vaut 48 cm\( \normalsize ^3\) . Si \(x\)  et \(y\)  représentent les dimensions de la base, donnez une fonction qui exprime \(y\) en fonction de \(x\).

Déterminez à quelle fonction correspond le graphe suivant.

Soient les fonctions \(\normalsize g(x) = x^2 \), \(\normalsize h(x) = 2^x \), \(\normalsize s(x) = \sin x \). Effectuez la décomposition de la fonction \(\normalsize f(x) = 2^{\sin x}\)  en termes des fonctions \(\normalsize g \), \(\normalsize h\) et \(\normalsize s \).

Déterminez les points où \( f \) vaut \(2\).

La fonction\( \normalsize f(x) = x^2 +\frac{1}{x^2}\) est

Soient les fonctions \(f(x)= x^2 - 2 \vert x \vert\)  et \(g(x)=x^2 + 1\) . Calculez \((f \circ g)(-2) \).