Auto-Math
Déterminez l'ordonnée correspondant au point d'abscisse \(\normalsize x=-2 \) par la fonction \(\normalsize f(x)=\sqrt{x-2} \).
impossible
\(0\)
\(-2\)
\(6\)
Soient \(\normalsize f~: \mathbb{R} \to \mathbb{R}~: x \mapsto \frac{1}{\sqrt{x}}\) et \(\normalsize g~: \mathbb{R} \to \mathbb{R}~: x \mapsto x^2-2 \). Trouvez \(\normalsize (f \cdot g)(x) \).
\(\frac{x^2}{\sqrt{x}}-2 \)
\( (x^2-2)\sqrt{x} \)
\( x\sqrt{x}-2 \)
\( \frac{x^2-2}{\sqrt{x}} \)
Déterminez l'abscisse correspondant au point d'ordonnée \(\normalsize y=-2\) pour la fonction \(\normalsize g(x)=3x^2-2x\) .
\(8\)
\( 16 \)
\( \frac{1+\sqrt{7}}{3}\) et \(\frac{1-\sqrt{7}}{3} \)
Déterminez l'abscisse correspondant au point d'ordonnée \(\normalsize y=1\) pour la fonction \(\normalsize f(x)=\sqrt{x-2}\) .
\(1\)
\(-1\)
\(3\)
Déterminez l'ordonnée à l'origine de \(\normalsize y=\sqrt{x-1}\) .
\(2\)
pas d'ordonnée à l'origine
Déterminez l'abscisse correspondant au point d'ordonnée \(\normalsize y=0\) pour la fonction \(\normalsize f(x)=\sqrt{x-2} \).
\(4\)
Déterminez les racines de \(y=x+1\).
pas de racine
Déterminez l'abscisse correspondant au point d'ordonnée \(\normalsize y=0\) pour la fonction \(\normalsize h(x)=\frac{6}{x}\) .
\( 6\)
\( \frac{0}{6}\)
Soit \(\normalsize f(x) = 2x - 3\) et \(\normalsize g(x) = 3x + 2 \). Calculez \(\normalsize f \circ g \).
\(6x+1\)
\(6x+11\)
\(6x+5\)
\(5x+5\)
Déterminez l'abscisse correspondant au point d'ordonnée \(\normalsize y=1\) pour la fonction \(\normalsize g(x)=3x^2-2x \).
\(1\) et \(-\frac{1}{3} \)
\( -1\) et \(\frac{1}{3} \)
\( \frac{2}{3} \)