Auto-Math
Simplifiez l'expression \(\displaystyle{ \frac{(2a^2bx)(-3a^3b^2x^3)}{12a^5bx^2}}\).
\(-\dfrac{abx}{2}\)
\(-\dfrac{x^2}{3}\)
\(\dfrac{2-3abx^2}{12a^3x}\)
\(-\dfrac{b^2x^2}{2}\)
Calculez \(\dfrac{\sqrt{14}+\sqrt{15}}{\sqrt{7}-\sqrt{5}}\).
\(\dfrac{29}{2}\)
\(\dfrac{7\sqrt{2}+\sqrt{70}+\sqrt{105}+5\sqrt{3}}{12}\)
\(\dfrac{7\sqrt{2}+\sqrt{70}+\sqrt{105}+5\sqrt{3}}{2}\)
\(\dfrac{\sqrt{21}+\sqrt{19}+\sqrt{22}+\sqrt{20}}{2}\)
Calculez \(\dfrac{3x+3y}{x^2-y^2}+\dfrac{7x-7y}{x^2-2xy+y^2}\).
\(\dfrac{10}{x-y}\)
\(\dfrac{10}{x+y}\)
\(\dfrac{10x-4y}{(x-y)^2}\)
\(\dfrac{10x-4y}{(x-y)^2(x+y)}\)
Simplifiez l'expression \(\sqrt[4]{a^4+a^4b}\).
\(a(1+\sqrt[4]{b})\)
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
\(a\sqrt[4]{1+b}\)
impossible
Calculez \(\dfrac{\sqrt{2}}{2-2\sqrt{2}}\).
\(-\dfrac{\sqrt{2}}{2}-1\)
\(\dfrac{\sqrt{2}}{6}+\dfrac{1}{3}\)
\(\dfrac{1}{\sqrt{2}}-\dfrac{1}{2}\)
\(-\sqrt{2}\)
Calculez \(\dfrac{3-\frac{2}{3}}{5+\frac{5}{6}}\).
\(\dfrac{2}{5}\)
\(\dfrac{245}{18}\)
\(\dfrac{1}{5}\)
\(-\dfrac{7}{20}\)
Calculez \(\dfrac{1}{2}\left(\dfrac{2}{3}-\dfrac{4}{5}\right)-\dfrac{3}{4}\left(2-\dfrac{1}{3}\right)\).
\(-\dfrac{61}{60}\)
\(-\dfrac{79}{60}\)
\(-\dfrac{19}{60}\)
\(-\dfrac{23}{10}\)
Calculez \(\left(\dfrac{1}{a}+1\right)/(1-a^2)\).
\(\dfrac{1}{1-a}\)
\(\dfrac{(1-a)(1+a)^2}{a}\)
\(\dfrac{1}{a(1-a)}\)
\(\dfrac{2}{a(1-a^2)}\)
Si \(a=0,2\), \(b=-0,1\), \(c=-0,5\) et \(d=2\) Calculez \(c(a+b)^2+d^2\).
\(3,5\)
\(3,975\)
\(3,995\)
\(4,005\)
Simplifiez l'expression \(\left( \dfrac{a^2b^3c^{-2}}{a^3b^2c}\right) ^{-1}\).
\(\dfrac{ac^3}{b}\)
\(\dfrac{b}{ac^3}\)
\(\dfrac{c}{a^5b^5}\)
\(\dfrac{c^3}{a^5b^5}\)