Fonctions : Test de niveau 2

Ecrivez la formule de la fonction dont l'ordonnée vaut la différence entre les carrés de l'abscisse et de 9.

Soient les fonctions \(\normalsize g(x) = x^2 \), \(\normalsize h(x) = 2^x \), \(\normalsize s(x) = \sin x \). Effectuez la décomposition de la fonction \(\normalsize f(x) = \sin 2^x\) en termes des fonctions \(\normalsize g \), \(\normalsize h\) et \(\normalsize s \).

Déterminez à quelle fonction correspond le graphe suivant.

Soient \(\normalsize f(x) = \frac{1}{3}x^2\) et \(\normalsize g(x)= \sqrt x \). Calculez \(\normalsize ( f \circ g )(4) \).

Soient les fonctions \(\normalsize g(x) = x^2 \), \(\normalsize h(x) = 2^x\) ,\( \normalsize s(x) = \sin x \). Calculez \(\normalsize (g \circ h)(y) \).

On considère les fonctions \(\normalsize f(x)=1+x^2\)  et \(\normalsize g(x)=\sqrt{4x+2} \). Calculez la fonction \(\normalsize (f\circ g\circ f)(x)\) .

Soient les fonctions \(\normalsize g(x) = x^2\), \(\normalsize h(x) = 2^x \), \(\normalsize s(x) = \sin x \). Effectuez la décomposition de la fonction \(f(x) =2^{2^x} \)  en termes des fonctions \(\normalsize g \), \(\normalsize h\)  et \(\normalsize s \).

Déterminez les racines de la fonction \(\normalsize y=\sqrt{x^2-9} \).

Ecrivez la fonction \(\normalsize \frac{2(y-1)}{5}=x\)  sous la forme \(\normalsize y=f(x)\) .

Ecrivez la formule de la fonction dont l'ordonnée vaut le carré de la somme de l'abscisse et de 1.