Auto-Math
Soit \(\normalsize f(x) = 2x - 3\) et \(\normalsize g(x) = 3x + 2 \). Calculez \(\normalsize g \circ f \).
\(5x+5\)
\(6x+5\)
\(6x+7\)
\(6x-7\)
Soient \(\normalsize f~: \mathbb{R} \to \mathbb{R}~: x \mapsto \frac{1}{\sqrt{x}}\) et \(\normalsize g~: \mathbb{R} \to \mathbb{R}~: x \mapsto x^2-2 \). Trouvez \(\normalsize (g \circ f)(x) \).
\(\frac{1}{x-2} \)
\( \frac{1}{x}-2 \)
\( \frac{1}{\sqrt{x-2}} \)
\( \frac{1}{\sqrt{x^2-2}} \)
Soit \(\normalsize f(x) = 4 - 3x\) et \(\normalsize g(x) = 2x - 3x^2 \). Calculez \(\normalsize f \circ g \).
\( 9x^2-6x+4 \)
\(-27x^2+66x-40\)
\( -9x^2-6x+4 \)
\( -3x^2-x+4 \)
Déterminez l'ordonnée à l'origine de \(\normalsize y=x^2+1 \).
pas d'ordonnée à l'origine
\(0\)
\(-1\)
\(1\)
Déterminez l'ordonnée correspondant au points d'abscisse \(\normalsize x=1\) par la fonction \(\normalsize h(x)=\frac{6}{x}\).
\( 6 \)
\( \frac{1}{6} \)
impossible
Déterminez le domaine de la fonction \(\normalsize g(x)=3x^2-2x \).
\(\mathbb{R}_0 \)
\(\mathbb{R} \)
\(\mathbb{R}^+ \)
\(\mathbb{R}\setminus\{0,\frac{2}{3}\} \)
Soient \(\normalsize f~: \mathbb{R} \to \mathbb{R}~: x \mapsto \frac{1}{\sqrt{x}}\) et \(\normalsize g~: \mathbb{R} \to \mathbb{R}~: x \mapsto x^2-2 \). Trouvez \(\normalsize (f+g)(x) \).
\(\frac{x^2}{\sqrt{x}}-\frac{2}{\sqrt{x}} \)
\( \frac{1}{\sqrt{x}}+x^2-2 \)
\(x^2-\sqrt{x}-2\)
\( \frac{1+x^2-2}{\sqrt{x}} \)
Parmi les points suivants, lequel appartient au graphe de la fonction \(f(x)=-2x+2\) ?
\( (0,0)\)
\((3,1)\)
\((2,-2)\)
\((-2,2)\)
Soient \(\normalsize f(x) = \frac{1}{3}x^2\) et \(\normalsize g(x) = \sqrt x \). Calculez \(\normalsize ( f \cdot g )(9) \).
\(9\)
\(243\)
\(81\)
\(-81\)
Déterminez l'abscisse correspondant au point d'ordonnée \(\normalsize y=1\) pour la fonction \(\normalsize f(x)=\sqrt{x-2}\) .
\(3\)