Auto-Math
Effectuez \((3a^2b^3c^2-4a^3c^4)^2\)
\(9a^4b^6c^4-16a^6c^8\)
\(9a^4b^9c^4+16a^9c^{16}-24a^5b^3c^6\)
\(9a^4b^6c^4+16a^6c^8-24a^5b^3c^6\)
\(9a^4b^6c^4+16a^6c^8-24a^6b^3c^8\)
Factorisez \(2(x-1)(a+b)+a(1-x)\)
\((x-1)^2(a+2b)\)
\((x-1)(a+2b)\)
\((x-1)(3a+2b)\)
\(a+2b\)
Factorisez \(ax^8-a\)
\(a(x^4-1)^2\)
\(a(x^2-1)^4\)
\(a(x-1)(x+1)(x^2+1)(x^4+1)\)
\(a(x-1)^8\)
\(16a^4-8a^2+1=\)
\((4a^2-1)(4a^2+1)\)
\((4a^2-1)^2\)
\(8a^2(2a^2-1)\)
\((4a^4-1)^2\)
Factorisez \(x^3-5x^2+5x-1=\)
\((x-1)^5\)
\((x-1)(x^2-6x+1)\)
\((x-1)(x^2-4x+1)\)
\((x-1)^3\)
\((x^2-1)^3=\)
\(x^6-1\)
\(-x^6+3x^4-3x^2+1\)
\(x^6-3x^4+3x^2-1\)
\(x^5-3x^4+3x^2-1\)
Effectuez \((x+\frac{1}{x})^3\)
\(\dfrac{x^9+3x^4+3x^2+1}{x^3}\)
\(\dfrac{x^6+3x^4+3x^2+1}{x^3}\)
\(\dfrac{x^6+3x^5+3x+1}{x^3}\)
\(\dfrac{x^6+1}{x^3}\)
Factorisez \(a-2b-ax+2bx\)
\((a-2b)(1-x)\)
\((a-2b)(-x)\)
\((a+2bx)(a-2bx)\)
\((a-2b)(1+x)\)
\((-x+2)(-x-2)=\)
\(x^2-4\)
\(4-x^2\)
\((x-4)^2\)
\(x^2+4\)
Quel polynôme faut-il ajouter à \(x+5\) pour obtenir \(4x-1\) ?
\(3x+4\)
\(4x-6\)
\(3x-6\)
\(4-6\)