Auto-Math
Factorisez \(ac+bc+ad+bd\)
\((a+d)(b+c)\)
\(a(b+c+d)\)
impossible
\((a+b)(c+d)\)
Factorisez \(6x-3x^2-3\)
\(3(x+1)^2\)
\(3(1-x)^2\)
\(x^2-2x+1\)
\(-3(x-1)^2\)
Factorisez \(x^3+x^2+x+1\)
\(x^2(x+1)\)
\((x+1)(x^2+1)\)
\(x(x^2+x+1)+1\)
\((x+1)(x+1)(x-1)\)
Factorisez \(2x^3-x^2-18x+9=\)
\((2x-3)^3\)
\((2x-1)(x^2+9)\)
\((x-9)(x+9)(6x+1)\)
\((2x-1)(x-3)(x+3)\)
Si P est un polynôme de degré 5 et Q un polynôme de degré 3 alors P+Q est un polynôme de degré
\(5\)
\(3\)
\(2\)
\(8\)
Factorisez \(x^5+4-4x^3-x^2\)
\((x^3-1)(x^2+4)\)
\((x-1)(x^2+x+1)(x-2)(x+2)\)
\(16a^4-8a^2+1=\)
\((4a^2-1)(4a^2+1)\)
\((4a^2-1)^2\)
\(8a^2(2a^2-1)\)
\((4a^4-1)^2\)
La division de \( x^4-3x+3x^3-1\) par \( x^2-1\) est-elle exacte ?
oui
non
je ne sais pas
Le reste de la division de \(x^4-3x+3x^3-1\) par \(x^2-1\) est
\(-1\)
\(1\)
\(0\)
\(x^2+3x+1\)
\((-x+2)(-x-2)=\)
\(x^2-4\)
\(4-x^2\)
\((x-4)^2\)
\(x^2+4\)