Auto-Math
L'évaluation du polynôme \(P(x)= -3x^2+x-4\) en \(x=0\) vaut
\(0\)
\(-3x^ 2+x\)
\(-4\)
\(4\)
L'évaluation du polynôme \(P(x)= x^3+5x^2-4x+2\) en \(x=-3\) vaut
\(32\)
\(-58\)
\(-3\)
\(28\)
Effectuez \((xy-1)^2\)
\(x^2y^2-1-2xy\)
\(x^2y^2+1-2xy\)
\(x^2y^2+1-xy\)
\(x^2y^2-1\)
Factorisez \( (x+y)(3a+2)-(x+y)\)
\((x+y)(3a+1)\)
\((x+y)^2(3a+2)\)
\(3a+2\)
\(3ax+x+3ay+y\)
\((\sqrt{2}+1)(\sqrt{2}-1)=\)
\(\sqrt{2}-1\)
\(2\sqrt{2}-1\)
\(1\)
\(2-2\sqrt{2}-1\)
Effectuez \((2x^3+x^2+3)(2x^2-x+1)\)
\(2x^3+2x^2-x+3\)
\(4x^5-x^3+3\)
\(4x^5+x^3+7x^2-3x+3\)
\(4x^6+x^3+7x^2-3x+3\)
Le reste de la division de \(x^4-5x^2-x\) par \( x+1\) vaut
\(x^3-x^2-4x+3\)
\(-5\)
\(-1\)
Factorisez \(x^4-y^6\)
\((x^2-y^3)^2\)
\((x^{\frac{4}{3}}-y^2)^3\)
\((x^2-y^3)(x^2+y^3)\)
\((2x+1)^3=\)
\(4x^2+4x+1\)
\(8x^3+1\)
\(8x^3+12x^2+6x+1\)
\(8x^3+6x^2+6x+1\)
Factorisez \((a+1)^2+2(a+1)\)
\(a+3\)
\((a+1)(a+3)\)
\(a^2+4a+3\)
\((a+1)(3a+3)\)