Auto-Math
Si \(A\) est une matrice carrée d'ordre n, alors \(\det(-A) =\)
\( -\det(A) \)
\(\det(A)\)
\(\det(A) \text{ si n pair et } -\det(A) \text{ sinon} \)
\(\det(A) \text{ si n impair et } -\det(A) \text{ sinon}\)
Si \(A\) et \(B\) sont des matrices carrées d'ordre n telles que \(A\cdot B = 0\) (où \( 0\) est la matrice nulle d'ordre n), alors on a toujours
\(A = 0 \text{ et } B = 0\)
\(A = 0 \text{ ou } B = 0\)
\(B \cdot A = 0\)
aucune des autres affirmations n'est vraie
Quel est le rang de la matrice identité d'ordre \(n\) ?
\(0\)
\(1\)
\(n\)
\(n^2\)
Si \(A\) est une matrice carrée d'ordre 4, de rang égal à 3, alors
\(A\) possède une colonne entièrement nulle
\(\det(A) = 0\)
\(A\) est inversible
Quel est le déterminant de la matrice \(\left(\begin{array}{cccc} 1 & -1 & 1 & 7 \\ 2 & -2 & 3 & 5 \\ 3 & -3 & 5 & 3 \\ 4 & -4 & 7 & 1 \end{array}\right) \) ?
-141
-10
0
37
Quel est le déterminant de la matrice \(\left(\begin{array}{ccc} -2 & 2 & -3 \\ 3 & -1 & 2 \\ 2 & 1 & 1 \end{array}\right) \) ?
-12
-7
7
12
Quel est le déterminant de la matrice \(\left(\begin{array}{cccc} 0 & 0 & 0 & 7 \\ 0 & 0 & -1 & -5 \\ 0 & -2 & 4 & 6 \\ 3 & 2 & 1 & 1 \end{array}\right)\) ?
-42
42
Quel est le rang de la matrice \(\left(\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 64 \end{array}\right)\) ?
1
2
3
4
Quel est l'inverse de la matrice \(\left(\begin{array}{ccc} 1 & 2 & -1 \\ 3 & 1 & 2 \\ -1 & 3 & 1 \end{array}\right)\) ?
\(\displaystyle\dfrac{1}{5}\, \left(\begin{array}{ccc} 1 & -1 & 1 \\ 1 & 0 & -1 \\ -2 & -1 & -1 \end{array}\right)\)
\( \left(\begin{array}{ccc} 1 & 3 & -1 \\ 2 & 1 & 3 \\ -1 & 2 & 1 \end{array}\right)\)
\(\displaystyle\dfrac{1}{5}\, \left(\begin{array}{ccc} 1 & 1 & -1 \\ 1 & 0 & 1 \\ -2 & 1 & 1 \end{array}\right)\)
elle n'est pas inversible
Quel est le déterminant de la matrice \(\left(\begin{array}{cccc} 3 & 2 & 0 & -1 \\ 1 & -3 & 2 & 7 \\ 2 & -1 & -1 & 3 \\ 1 & -3 & 2 & 7 \end{array}\right) \) ?
-63
28
63