Auto-Math
Trouver l'ensemble \(S \) des \(x\) tels que \(\ln(5x) - \ln(x + 1) = \ln(2)\).
\(S = \{-1\}\)
\(S = \left\{\dfrac{1}{4}\right\} \)
\(S =\left \{\dfrac{1}{3}\right\} \)
\( S =\left \{\dfrac{2}{3}\right\} \)
Trouver l'ensemble \(S \) des \(x\) tels que \(2\ln(x) = \ln(2x) \).
\( S = \{0\} \)
\(S = \{2\} \)
\(S = \{2, 0\} \)
\( S = \{\frac{1}{2}, 2\} \)
Trouver l'ensemble \(S \) des \(x\) tels que \(\ln(x) + \ln(x + 1) = 0\).
\(S =\left \{\dfrac{-1 - \sqrt{5}}{2}, \dfrac{-1 + \sqrt{5}}{2} \right\} \)
\(S =\left \{\dfrac{-1 + \sqrt{5}}{2}\right\} \)
\(S =\left \{\dfrac{-1 - \sqrt{5}}{2}\right\} \)
\( S = \emptyset \)
Trouver l'ensemble \(S \) des \(x\) tels que \(e^{3x} + e^{2x} - 2e^x = 0\).
\(S = \{0, -2, 1\} \)
\(S = \{-2, 1\}\)
\( S = \emptyset\)
Trouver l'ensemble \(S \) des \(x\) tels que \(\ln(-x) + \ln(x) = 0\).
\(S = \{-1\} \)
\( S = \{1\}\)
Trouver l'ensemble \(S \) des \(x\) tels que \(\ln(2x^2 + x) = 0 \).
\( S =\left \{\dfrac{1}{2}\right\} \)
\(S =\left \{0, \dfrac{-1}{2}\right\} \)
\(S =\left \{0, \dfrac{1}{2}\right\} \)
\( S = \left\{\dfrac{1}{2}, -1\right\} \)
Calculez \(\displaystyle\lim_{x \rightarrow +\infty} \frac{\ln(x)}{x} \).
\(0\)
\(+\infty\)
\(1\)
La limite n'existe pas.
Calculez les deux limites suivantes :
\(l_1 :=\displaystyle \lim_{\stackrel{x \rightarrow 0}{x > 0}} e^{1/x}\)
et
\(l_2 :=\displaystyle \lim_{\stackrel{x \rightarrow 0}{x < 0}} e^{1/x}.\)
\(l_1 = 0,\, l_2 = 0\)
\( l_1 = +\infty,\, l_2 = 0 \)
\( l_1 = 0,\, l_2 = +\infty\)
\( l_1 = +\infty,\, l_2 = -\infty \)
Calculez \(\displaystyle\lim_{\stackrel{x \rightarrow 0}{x > 0}} \ln(\sin(x))\sin(x) \).
\(\infty\)
Calculez \(\displaystyle\lim_{x\to 0}(1+x)^{1/x}\) .
\(\ln(x)\)
\(e^x\)
\(e\)