Auto-Math
Trouvez \(x\) si \(2^x = 4 \).
\(x = 0\)
\(x = -2\)
\(x = 2 \)
Impossible
Trouvez l'ensemble \(S\) des \(x\) tels que \(3^x > \dfrac{1}{9} \).
\(S = \{-2\}\)
\(S = [-2, +\infty[ \)
\(S = ]-\infty, -2[ \)
\( S = ]-2, +\infty[ \)
Calculez la dérivée de la fonction \(f(x)=e^{\mbox{tg}(x)} \).
\(e^{\mbox{tg}(x)}\)
\(\dfrac{e^{\mbox{tg}(x)}}{\cos^2(x)}\)
\(\dfrac{e^{\mbox{tg}(x)}}{\sin^2(x)}\)
\(e^{\cos^2(x)} \)
Trouvez l'ensemble \(S\) des \(x\) tels que \(2^x \leq \dfrac{1}{16} \).
\(S = ]-\infty, -4] \)
\(S = ]-\infty, -4[ \)
\(S = [-4,+\infty[ \)
\(S = \{-4\} \)
Trouvez l'ensemble \(S\) des \(x\) tels que \(\log_4(x) \leq 4 \).
\(S = ]-\infty, 256] \)
\(S = [256, +\infty[ \)
\( S = ]0, 256] \)
\(S = \{256\}\)
Trouvez l'ensemble \(S\) des \(x\) tels que \(\log_{\frac{1}{4}} (x) > 3\).
\(S = \left]0, \dfrac{1}{64}\right[ \)
\(S =\left ]\dfrac{1}{64}, +\infty\right[\)
\( S =\left ]-\infty, \dfrac{1}{64}\right[\)
\(S = ]-\infty, 64[ \)
Trouvez l'ensemble des éléments \(x \in \mathbb{R} \) tels que \(e^{\ln(x)} = x \).
\(\mathbb{R} \)
\(\mathbb{R}_{0}^{+}\)
\(\mathbb{R}^{+}\)
\(\emptyset \)
Trouvez l'ensemble \(S\) des \( x\) tels que \(\ln\left(\dfrac{x + 3}{2}\right) = \dfrac{1}{2}(\ln(x) + \ln(3)) \).
\(S = \{3\}\)
\(S =\left \{\dfrac{3}{2}\right\}\)
\(S = \{-1 + \sqrt{3}, -1 - \sqrt{3}\}\)
\(S = \{-1 + \sqrt{3}\} \)
Trouvez \(x\) si \((-2)^x = -\dfrac{ 1 }{ 2 } \).
\(x = 2\)
\(x = 1\)
\( x = -1 \)
Donnez le domaine de définition de la fonction \(f(x)=\log_2{(x-5)} \).
\(\mathbb{R}\setminus\{5\} \)
\( \mathbb{R}_0^+ \setminus \{5\} \)
\(\mathbb{R}_0^+ \)
\(]5, +\infty[ \)