Logarithmes et exponentielles : Test de niveau 2

Trouver l'ensemble \(S \) des \(x\) tels que \(e^{2x} - 2 e^x + 1 = 0 \).

Trouver l'ensemble \(S \) des \(x\) tels que \(\log_2(x) = 2\log_2(3) - \log_2(x - 5) + 2\)

Trouver l'ensemble \(S \) des \(x\) tels que \(e^{3x} + e^{2x} - 2e^x = 0\).

Trouver l'ensemble \(S \) des \(x\) tels que \(e^{2x} + 2 e^x + 1 = 0\).

Trouver l'ensemble \(S \) des \(x\) tels que \(\ln(-x) + \ln(x) = 0\).

Trouver l'ensemble \(S \) des \(x\) tels que \(\ln(x) + \ln(x + 1) = 0\).

Trouver l'ensemble \(S \) des \(x\) tels que \( \log_{10}(3x + 7) = 2 \log_{10}(5)\).

Soient \(a\), \(b \in \mathbb{R}_{0}^{+} \). Parmi les suivantes, quelle propriété est vraie ?

Trouver l'ensemble \(S \) des \(x\) tels que \( x \leq 0 \mbox{ et } e^{x} = x\).

Trouver l'ensemble \(S \) des \(x\) tels que \(\ln^2(x) - 2 \ln(x) + 1 = 0\).