Logarithmes et exponentielles : Test de niveau 2

Calculez les deux limites suivantes :

\(l_1 :=\displaystyle \lim_{\stackrel{x \rightarrow 0}{x > 0}} e^{1/x}\)

et

\(l_2 :=\displaystyle \lim_{\stackrel{x \rightarrow 0}{x < 0}} e^{1/x}.\)

Trouver l'ensemble \(S \) des \(x\) tels que \(\ln(x^2 + x - 1) = \ln(x)\).

Trouver l'ensemble \(S \) des \(x\) tels que \(e^{x} + 3e^{-x} > 4\).

Parmis les graphes suivants, lequel correspond à celui de la fonction \( f(x) = \dfrac{e^x + e^{-x}}{2}\) ?

Trouver l'ensemble \(S \) des \(x\) tels que \(e^{3x} + e^{2x} - 2e^x = 0\).

Trouver l'ensemble \(S \) des \(x\) tels que \(\ln(x^2 - 3x - 3) > 0\).

Soit \(p(x) = a_nx^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0\) un polynôme de degré plus grand que 1 (\(a_n \neq 0 \)). Que peut-on dire de la limite  \(\displaystyle\lim_{x \rightarrow +\infty} e^{-x} p(x)\) ?

Trouver l'ensemble \(S \) des \(x\) tels que \( x \leq 0 \mbox{ et } e^{x} = x\).

Trouver l'ensemble \(S \) des \(x\) tels que \(\ln(-x) + \ln(x) = 0\).

Trouver l'ensemble \(S \) des \(x\) tels que \(e^{e^x} = 1\).