Auto-Math
Trouver l'ensemble \(S \) des \(x\) tels que \(e^{2x} - 2 e^x + 1 = 0 \).
\(S = \emptyset\)
\(S = \{\ln(2)\}\)
\(S = \{\ln(2), -\ln(2)\} \)
\(S = \{0\} \)
Trouver l'ensemble \(S \) des \(x\) tels que \(e^{x} + 3e^{-x} > 4\).
\(S = ]-\infty, 0[ \)
\( S = ]\ln(3), +\infty[ \)
\(S = ]-\infty, 0[ \cup ]\ln(3), +\infty[ \)
\(S = ]-\infty, 1[ \cup ]3, +\infty[\)
Calculez \(\displaystyle\lim_{\stackrel{x \rightarrow 0}{x > 0}} \ln(\sin(x))\sin(x) \).
\(0\)
\(1\)
\(\infty\)
La limite n'existe pas.
Trouver l'ensemble \(S \) des \(x\) tels que \(2\ln(x) = \ln(2x) \).
\( S = \{0\} \)
\(S = \{2\} \)
\(S = \{2, 0\} \)
\( S = \{\frac{1}{2}, 2\} \)
Calculez \(\displaystyle\lim_{\stackrel{x \rightarrow 0}{x > 0}} x\ln(x) \).
\(1 \)
La limite n'a pas de sens.
Trouver l'ensemble \(S \) des \(x\) tels que \(\ln(2x^2 + x) = 0 \).
\( S =\left \{\dfrac{1}{2}\right\} \)
\(S =\left \{0, \dfrac{-1}{2}\right\} \)
\(S =\left \{0, \dfrac{1}{2}\right\} \)
\( S = \left\{\dfrac{1}{2}, -1\right\} \)
Trouver l'ensemble \(S \) des \(x\) tels que \( \log_{10}(3x + 7) = 2 \log_{10}(5)\).
\(S = \{1\} \)
\( S = \{6\} \)
\(S = \{18\}\)
\( S =\left \{\dfrac{25}{3}\right\} \)
Trouver l'ensemble \(S \) des \(x\) tels que \(\ln(x^2 + x - 1) = \ln(x)\).
\( S = \emptyset\)
\(S = \{1, -1\}\)
\(S = \{-1, 2\} \)
Calculez les deux limites suivantes :
\(l_1 :=\displaystyle \lim_{\stackrel{x \rightarrow 0}{x > 0}} e^{1/x}\)
et
\(l_2 :=\displaystyle \lim_{\stackrel{x \rightarrow 0}{x < 0}} e^{1/x}.\)
\(l_1 = 0,\, l_2 = 0\)
\( l_1 = +\infty,\, l_2 = 0 \)
\( l_1 = 0,\, l_2 = +\infty\)
\( l_1 = +\infty,\, l_2 = -\infty \)
Soit \(p(x) = a_nx^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0\) un polynôme de degré plus grand que 1 (\(a_n \neq 0 \)). Que peut-on dire de la limite \(\displaystyle\lim_{x \rightarrow +\infty} e^{-x} p(x)\) ?
Elle vaut \(+\infty\) .
Elle vaut \(0\).
Elle n'existe pas.
Elle dépend du degré du polynôme.