Logarithmes et exponentielles : Test de niveau 2

Trouver l'ensemble \(S \) des \(x\) tels que \(e^{3x} + e^{2x} - 2e^x = 0\).

Calculez les deux limites suivantes :

\(l_1 :=\displaystyle \lim_{\stackrel{x \rightarrow 0}{x > 0}} e^{1/x}\)

et

\(l_2 :=\displaystyle \lim_{\stackrel{x \rightarrow 0}{x < 0}} e^{1/x}.\)

Calculez \(\displaystyle\lim_{x \rightarrow +\infty} \frac{\ln(x)}{x} \).

Calculez \(\displaystyle\lim_{\stackrel{x \rightarrow 0}{x > 0}} x\ln(x) \).

Trouver l'ensemble \(S \) des \(x\) tels que \(\ln^2(x) - 2 \ln(x) + 1 = 0\).

Trouver l'ensemble \(S \) des \(x\) tels que \(\ln(x^2 + x - 1) = \ln(x)\).

Trouver l'ensemble \(S \) des \(x\) tels que \(\ln(x^2 - 3x - 3) > 0\).

Trouver l'ensemble \(S \) des \(x\) tels que \(e^{x} + 3e^{-x} > 4\).

Trouver l'ensemble \(S \) des \(x\) tels que \(\ln(2x^2 + x) = 0 \).

Trouver l'ensemble \(S \) des \(x\) tels que \(e^x + e^{-x} = 2\).