Auto-Math
Calculez \(\displaystyle\lim_{\stackrel{x \rightarrow 0}{x > 0}} \ln(\sin(x))\sin(x) \).
\(0\)
\(1\)
\(\infty\)
La limite n'existe pas.
Trouver l'ensemble \(S \) des \(x\) tels que \(\ln(5x) - \ln(x + 1) = \ln(2)\).
\(S = \{-1\}\)
\(S = \left\{\dfrac{1}{4}\right\} \)
\(S =\left \{\dfrac{1}{3}\right\} \)
\( S =\left \{\dfrac{2}{3}\right\} \)
Calculez les deux limites suivantes :
\(l_1 :=\displaystyle \lim_{\stackrel{x \rightarrow 0}{x > 0}} e^{1/x}\)
et
\(l_2 :=\displaystyle \lim_{\stackrel{x \rightarrow 0}{x < 0}} e^{1/x}.\)
\(l_1 = 0,\, l_2 = 0\)
\( l_1 = +\infty,\, l_2 = 0 \)
\( l_1 = 0,\, l_2 = +\infty\)
\( l_1 = +\infty,\, l_2 = -\infty \)
Soit \(p(x) = a_nx^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0\) un polynôme de degré plus grand que 1 (\(a_n \neq 0 \)). Que peut-on dire de la limite \(\displaystyle\lim_{x \rightarrow +\infty} e^{-x} p(x)\) ?
Elle vaut \(+\infty\) .
Elle vaut \(0\).
Elle n'existe pas.
Elle dépend du degré du polynôme.
Trouver l'ensemble \(S \) des \(x\) tels que \(\ln(x^2 - 3x - 3) > 0\).
\(S = ]0, +\infty[ \)
\( S = ]-\infty, 1[ \cup ]2,+ \infty[\)
\(S = ]-\infty, -1[ \cup ]4, +\infty[ \)
\(S = ]4, +\infty[ \)
Trouver l'ensemble \(S \) des \(x\) tels que \(e^{2x} - 2 e^x + 1 = 0 \).
\(S = \emptyset\)
\(S = \{\ln(2)\}\)
\(S = \{\ln(2), -\ln(2)\} \)
\(S = \{0\} \)
Trouver l'ensemble \(S \) des \(x\) tels que \(e^{3x} + e^{2x} - 2e^x = 0\).
\(S = \{0, -2, 1\} \)
\(S = \{-2, 1\}\)
\( S = \{0\} \)
\( S = \emptyset\)
Soient \(a\), \(b \in \mathbb{R}_{0}^{+} \). Parmi les suivantes, quelle propriété est vraie ?
\(\ln(a) < \ln(b) \Rightarrow a > b\)
\(\ln(1/a) < \ln(1/b) \Rightarrow a > b\)
\(\ln(a) > 0\)
\(\ln(0) = 0\)
Trouver l'ensemble \(S \) des \(x\) tels que \(\ln^2(x) - 2 \ln(x) + 1 = 0\).
\(S = \{e\} \)
\(S = \{e, e^{-1}\} \)
\(S = \{e, -e\}\)
Trouver l'ensemble \(S \) des \(x\) tels que \(e^{e^x} = 1\).
\(S = \mathbb{R}\)
\( S = \mathbb{R}^{+} \)
\(S = \{0\}\)