Auto-Math
Soit A=(-1,5), B=(1,1) et C=(-4,2). Le point F tel que $ \overrightarrow{AB}=\overrightarrow{FC}$ est
\((-2,-2)\)
\((\frac{1}{4},\frac{5}{2})\)
\((-6,6)\)
\((2,-4)\)
Donner le rayon du cercle de centre (1,2) et passant par le point (6,-1).
\(\sqrt{34}\)
\(34\)
\(4\)
\(2\)
Soit A=(1,3) et B=(4,1). Déterminez C pour que OACB soit un parallélogramme.
\((3,-2)\)
\((-3,2)\)
\((5,4)\)
impossible
L'expression \(||\vec{a}||\odot(\vec{b}+\vec{c})\) a-t-elle un sens ?
oui
non
je ne sais pas
Dans un repère orthonormé dont l'unité est le centimètre, calculer \(b\) pour que le point (0,b) soit à \( \sqrt{5}\) cm du point (2,3).
\(b=5\)
\(b=4 \mbox{ ou } b=2\)
\(b=8\)
L'expression \( ||\vec{a}||(\vec{b}\odot\vec{c})\) a-t-elle un sens ?
Donner l'équation du cercle de centre (1,2) et passant par le point (6,-1).
\((x-1)^2+(y-2)^2=\sqrt{34}\)
\((x-1)^2+(y-2)^2=4\)
\((x-1)^2+(y-2)^2=2\)
\((x-1)^2+(y-2)^2=34\)
Soit \(A=(1,2,3)\), \(B=(3,2,2)\) et \(C=(5,5,6)\). Le triangle ABC est rectangle en
A
B
C
pas rectangle
Déterminez \(m\) en sachant que le point \(P=(2,1,5)\) est à une distance 7 du milieu du segment joignant \(A=(1,2,3)\) à \(B=(-1,6,m)\).
\(m=19\)
\(m=2\sqrt{39}+13 \)
\(m=19 \mbox{ ou } m=-5\)
Soit A=(1,3) et B=(2,-6). Déterminez C pour que OABC soit un parallélogramme.
\((3,-3)\)
\((1,-9)\)
\((-1,9)\)