Repères et vecteurs : Test de niveau 2

L'expression \( \vec{a}\odot\vec{b}+\vec{c}\) a-t-elle un sens ?

Le point P est soumis à une force \( \vec{F}\) d'intensité 8 Newton. La direction de cette force est

\( N65^\circ O\). Donnez la composante horizontale de \( \vec{F}\).

On considère trois points P, Q et R de coordonnées P=(-1,3,-5), Q=(2,k,-1) et R=(m,0,-8), avec k et m des nombres réels.

Déterminez les valeurs des paramètres k et m telles que le triangle de sommets P, Q et R soit rectangle en P, et les côtés PQ et PR soient de même longueur.

Soit A=(1,3) et B=(4,1). Déterminez C pour que OACB soit un parallélogramme.

On considère les vecteurs \((-5\sqrt{2},m)\) et \((3\sqrt{2},-\sqrt{3})\). Déterminez \(m\) pour que ces deux vecteurs soient parallèles.

Soit \(A=(-4,\frac{1}{2})\), \(B=(3,-\frac{1}{3})\), \(C=(-\frac{1}{2},0)\) et \(D=(-3,-2)\). Calculez les coordonnées de \(E\) pour que \(\overrightarrow{OE}=\overrightarrow{AB}+\overrightarrow{CD}\).

Soit A=(1,3) et B=(4,1). Déterminez C pour que OABC soit un parallélogramme.

Soient \( P_1 = (2,5,2)\)\( P_2 = (2,7,0)\) et \( P_3 = (0,7,0)\).

Calculez le produit vectoriel \(\vec{P_1 P_2} \times\vec{P_1 P_3}\).

Soit \( P_1=(-1,2,3)\) et \(P_2=(2,-2,8)\). Déterminez les coordonnées de \( P_3\) tel que

\( \overrightarrow{P_1P_3}=3\, \overrightarrow{P_1P_2}\).

Si \(\vec{a}=(-2,3,1)\), \(\vec{b}=(7,4,5)\) et \(\vec{c}=(1,-5,2)\) alors \(\vec{a}\odot(\vec{b}+\vec{c})=\)