Auto-Math
Effectuez \((-4x^2+2y^3)^2\)
\(16x^4+4y^5-16x^2y^3\)
\(16x^4+4y^6-16x^2y^3\)
\(4y^6-16x^4\)
\(4x^4+2y^6-8x^2y^3\)
Le reste de la division de \( x-x^3-1-2x^2\) par \(4+2x\) vaut
\(-\frac{1}{2}x^2+\frac{1}{2}\)
\(-2\)
\(0\)
\(-3\)
\((3a+2b)^2=\)
\(9a^2+12ab+4b^2\)
\(9a^2+4b^2\)
\(9a^2+4b^2+6ab\)
\(3a^2+2b^2+12ab\)
Factorisez \(a-2b-ax+2bx\)
\((a-2b)(1-x)\)
\((a-2b)(-x)\)
\((a+2bx)(a-2bx)\)
\((a-2b)(1+x)\)
Factorisez \((a+b)^3-(a+b)\)
\((a+b)(a^2+2ab+b^2)\)
\((a+b)^2\)
\((a+b)(a^2+2ab+b^2-1)\)
\(a^3+b^3-a-b\)
Effectuez \(3x-(2x^2+3)-[(2x+3x^2)-x+1]-(x-2)\)
\(-5x^2+x\)
\(-5x^2+x-2\)
\(x^2-x+2\)
\(-5x^2+x-5\)
L'évaluation du polynôme \(P(x)= -3x^2+x-4\) en \(x=\frac{1}{2}\) vaut
\(-5\)
\(-\frac{17}{4}\)
\(-\frac{5}{2}\)
\(-\frac{9}{2}\)
Factorisez \(2x^3-x^2-18x+9=\)
\((2x-3)^3\)
\((2x-1)(x^2+9)\)
\((x-9)(x+9)(6x+1)\)
\((2x-1)(x-3)(x+3)\)
Si P est un polynôme de degré 5 et Q un polynôme de degré 3 alors P+Q est un polynôme de degré
\(5\)
\(3\)
\(2\)
\(8\)
Factorisez \(a^3-b^3-a^2+b^2\)
\((a-b)(a^2+ab+b^2-a+b)\)
\((a-b)(a^2+ab+b^2-a-b)\)
\((a^2-b^2)(a-b-1)\)
\(a-b\)