Auto-Math
\((\sqrt{3}-\sqrt{2})^2=\)
\(5-2\sqrt{5}\)
\(1\)
\(5-\sqrt{6}\)
\(5-2\sqrt{6}\)
Déterminez \(p\) pour que le reste de la division de \(2x^3-px+2p+1\) par \(x-1\) valle 4.
\(p=\frac{129}{2}\)
\(p=\frac{5}{3}\)
\(p=1\)
\(p=-3\)
Factorisez \( (x+y)(3a+2)-(x+y)\)
\((x+y)(3a+1)\)
\((x+y)^2(3a+2)\)
\(3a+2\)
\(3ax+x+3ay+y\)
\((\sqrt{2}-1)^3=\)
\(5\sqrt{2}-7\)
\(2\sqrt{2}-1\)
\(6\sqrt{2}-7\)
\(7-5\sqrt{2}\)
Factorisez \((a+1)^2+2(a+1)\)
\(a+3\)
\((a+1)(a+3)\)
\(a^2+4a+3\)
\((a+1)(3a+3)\)
Déterminez \(p\) pour que le reste de la division de \( x^3 +7x^2-px+4\) par \( x+2\) valle 2.
\(p=11\)
\(p=-11\)
\(p=19\)
\(p=-12\)
Déterminez \( p\) pour que la division de \(x^2-2x+p\) par \( x-1\) soit exacte.
\(p=-1\)
\(p=2x-x^2\)
\(x^3+8=\)
\((x+2)(x^2+2x+4)\)
\((x+2)^3\)
\((x-2)(x^2-2x+4)\)
\((x+2)(x^2-2x+4)\)
Le polynôme \( 4x^2+2x-12\) est divisible par
\(x-2\)
\(2+x\)
\(x-1\)
\(3+x\)
Factorisez \(x^8-x\).
\(x(x^7-1)\)
\(x^7-1\)
\(x(x-1)^7\)
\(x(x^3-1)(x^4-1)\)