Auto-Math
La traduction mathématique de la proposition "Si a et b sont deux entiers naturels, il existe un multiple de a qui est supérieur à b'' est
\(\forall a\in\mathbb{N},\, \forall b\in\mathbb{N}, \exists\, k\in\mathbb{N}\, :\, ka\leq b\)
\(\exists\, k\in\mathbb{N},\, \forall a\in\mathbb{N},\, \forall b\in\mathbb{N}\, :\, ka\geq b\)
\(\forall a\in\mathbb{N},\, \forall b\in\mathbb{N}, \exists\, k\in\mathbb{N}\, :\, ka\geq b\)
\(\forall a\in\mathbb{N},\, \exists\, b\in\mathbb{N}\, :\, a\geq b\)
Pour quelles valeurs de vérité de P et Q la proposition "\((P\wedge Q)\Rightarrow P\)" est-elle fausse ?
P vraie et Q fausse
P fausse et Q vraie
toujours fausse
jamais fausse
La négation de la proposition "\(\forall x\in\mathbb{R},\exists\, y\in\mathbb{R}\, :\, x+y=0\)" est
\(x\not\in\mathbb{R},\forall y\not\in\mathbb{R}\, :\, x+y\neq 0\)
\(\exists\, y\in\mathbb{R},\forall x\in\mathbb{R}\, :\, x+y\neq 0\)
\(\exists\, x\in\mathbb{R},\forall y\in\mathbb{R}\, :\, x+y\neq 0\)
\(\exists\, x\in\mathbb{R},\forall y\in\mathbb{R}\, :\, x+y=0\)
La proposition "\(((P\vee Q)\wedge R)\Leftrightarrow(P\vee(Q\wedge R))\)" est une tautologie.
Vrai
Faux
Je ne sais pas
Soit \(B=\{1,2,3\}\). La proposition suivante est-elle vraie ou fausse : "\(\forall x\in B,\, \exists\, y\in B\, :\, x^ 2+y^2<12\)" ?
La réciproque de "Si f est dérivable alors f est continue" est
f est dérivable et pas continue
Si f est dérivable alors f n'est pas continue
Si f est continue alors f est dérivable
Si f n'est pas continue alors f n'est pas dérivable
Soit A et B deux ensembles non vides. L'implication "\(A\subseteq B\Rightarrow\forall x\in A\, :\, x\in B\)" est-elle vraie ou fausse ?
La proposition "\((P\vee(Q\Rightarrow Q))\Rightarrow Q\)" est une tautologie.
La négation de la proposition "Aucun élève de la classe n'est absent'' est
Tous les élèves de la classe sont présents
Tous les élèves de la classe sont absents
Il y a des élèves de la classe qui sont absents
Aucun élève de la classe n'est présent
La négation de la proposition "\(\forall x\in\mathbb{R}_0\, :\, \frac{1}{x}\in\mathbb{R}_0\)" est
\(\forall x\not\in\mathbb{R}_0\, :\, \frac{1}{x}\neq 0\)
\(\exists\, x\in\mathbb{R}_0\, :\, \frac{1}{x}\neq 0\)
\(\exists\, x\not\in\mathbb{R}_0\, :\, \frac{1}{x}\not\in\mathbb{R}_0\)
\(\exists\, x\in\mathbb{R}_0\, :\, \frac{1}{x}=0\)