Auto-Math
Ecrivez la phrase suivante sous forme de proposition composée et déterminez si elle est vraie ou fausse. Précisez les propositions simples \(P\) et \(Q\) que vous utilisez. "Il faut que 2+2=9 pour que 5 = 5."
Vrai
Faux
Je ne sais pas
Soit A et B deux ensembles non vides. L'implication "\(A\subseteq B\Rightarrow\exists\, x\in A\, :\, x\in B\)" est-elle vraie ou fausse ?
Soit A et B deux ensembles non vides. L'implication "\(A\subseteq B\Rightarrow\forall x\in B\, :\, x\in A\)" est-elle vraie ou fausse ?
Pour quelles valeurs de vérité de P et Q la proposition "\((P\wedge Q)\Rightarrow (P\vee Q)\)" est-elle fausse ?
P vraie et Q fausse
P fausse et Q vraie
toujours fausse
jamais fausse
La négation de la proposition "\( \forall x\in\mathbb{N},\, \forall y\in\mathbb{N}\, :\, x+y>0\)" est
\(\exists\, x\in\mathbb{N},\, \exists\, y\in\mathbb{N}\, :\, x+y<0\)
\(\exists\, x\in\mathbb{N},\, \exists\, y\in\mathbb{N}\, :\, x+y\leq 0\)
\(\forall x\in\mathbb{N},\, \forall y\in\mathbb{N}\, :\, x+y<0\)
\(\exists\, x\not\in\mathbb{N},\, \exists\, y\not\in\mathbb{N}\, :\, x+y\leq 0\)
Soit \(B=\{1,2,3\}\). La proposition suivante est-elle vraie ou fausse : "\(\exists\, x\in B,\, \forall y\in B\, :\, x^ 2<y+1\)" ?
La négation de la proposition "\(\forall x\in\mathbb{R},\exists\, y\in\mathbb{R}\, :\, x+y=0\)" est
\(x\not\in\mathbb{R},\forall y\not\in\mathbb{R}\, :\, x+y\neq 0\)
\(\exists\, y\in\mathbb{R},\forall x\in\mathbb{R}\, :\, x+y\neq 0\)
\(\exists\, x\in\mathbb{R},\forall y\in\mathbb{R}\, :\, x+y\neq 0\)
\(\exists\, x\in\mathbb{R},\forall y\in\mathbb{R}\, :\, x+y=0\)
La réciproque de "\(x\in\mathbb{N}\Rightarrow x\geq 0\)" est
\(x\geq 0\Rightarrow x\in\mathbb{N}\)
\(x\not\in\mathbb{N}\Rightarrow x<0\)
\(x<0\Rightarrow x\in\mathbb{N}\)
\(x<0\Rightarrow x\not\in\mathbb{N}\)
La négation de la proposition "Les trois nombres réels a, b et c sont négatifs'' est
Il y a au moins un des trois nombres réels a, b ou c qui est positif
Les trois nombres réels a, b et c sont positifs
Aucun des trois nombres réels a, b et c n'est négatif
Il y a au moins un des trois nombres réels a, b ou c qui est nul
La proposition "\(((P\Rightarrow Q)\wedge (Q\Rightarrow R))\Rightarrow (P\Rightarrow R)\)" est une tautologie.