Auto-Math
La traduction en français de la proposition "\(\forall x,\forall A,\forall B\, :\, x\in (A\cap B)\Rightarrow x\in (A\cup B)\)" est
Il y a un élément de l'intersection de deux ensembles qui est aussi dans l'union de ces ensembles.
Si l'intersection de deux ensembles contient un élément alors l'union de ces ensembles contient aussi un élément.
L'union de deux ensembles est contenue dans leur intersection.
L'intersection de deux ensembles est contenue dans leur union.
La proposition "\(((P\Rightarrow Q)\wedge(Q\Rightarrow P))\Leftrightarrow(P\Leftrightarrow Q)\)" est une tautologie.
Vrai
Faux
Je ne sais pas
La traduction mathématique de la proposition "Les ensembles A et B ont au moins un élément en commun" est
\(A\cap B\neq\emptyset\)
\(A\cup B\neq\emptyset\)
\(A\cap B=\emptyset\)
\(A\setminus B\neq\emptyset\)
Ecrivez la phrase suivante sous forme de proposition composée et déterminez si elle est vraie ou fausse. Précisez les propositions simples P et Q que vous utilisez. "2 + 2 = 4 et janvier est un mois.''
Ecrivez la phrase suivante sous forme de proposition composée et déterminez si elle est vraie ou fausse. Précisez les propositions simples P et Q que vous utilisez. "Paris est en Angleterre ou Londres est en France.''
"\( P \Rightarrow Q\)" est équivalente à
\(\neg P \Rightarrow\neg Q\)
\(Q\Rightarrow P\)
\(\neg Q\Rightarrow\neg P\)
\(Q \Rightarrow\neg P\)
Ecrivez la phrase suivante sous forme de proposition composée et déterminez si elle est vraie ou fausse. Précisez les propositions simples P et Q que vous utilisez. "2 + 2 = 5 si et seulement si 4 + 4 = 10."
La traduction mathématique de la proposition "Tout nombre réel est majoré par un entier" est
\(\forall x\in\mathbb{R},\, \exists\, n\in\mathbb{Z}\, :\, n\geq x\)
\(\forall x\in\mathbb{R},\, \forall n\in\mathbb{Z}\, :\, n\geq x\)
\(\forall x\in\mathbb{R},\, \exists\, n\in\mathbb{Z}\, :\, x\geq n\)
\(\exists\, n\in\mathbb{Z},\,\forall x\in\mathbb{R}\, :\, n\geq x\)
La proposition "\(\exists\, v\in\mathbb{Z}\, :\, v+5=\frac{9}{4}\)" est-elle vraie ou fausse ?
La proposition "\(\exists\, x\in\mathbb{R}\, :\, x+7\leq 4\)" est-elle vraie ou fausse ?