Repères et vecteurs : Test de niveau 2

Dans un repère orthonormé dont l'unité est le centimètre, calculer \(b\) pour que le point (3,b) soit à 5 cm de l'origine.

Déterminez \(m\) en sachant que le point \(P=(2,1,5)\) est à une distance 7 du milieu du segment joignant \(A=(1,2,3)\) à \(B=(-1,6,m)\).

Soit \( \vec{v}=(-3,1,1)\) et \( \vec{w}=(m,m-1, 5)\). Calculez les valeurs de \(m\) pour lesquelles \(\vec{v}\) et \( \vec{w}\) sont orthogonaux.

Le point \(P\) est soumis à une force \( \vec{F}\) d'intensité 5 Newton. La direction de cette force est

\( N20^\circ E\). Donnez la composante horizontale de \( \vec{F}\).

Soit \(B=(3,-\frac{1}{3})\) et \(D=(-3,-2)\). Calculez les coordonnées de \(E\) pour que \( \overrightarrow{OE}=2\overrightarrow{BD}\).

Soit A=(1,3), B=(-2,1) et C=(2,0). Le point D tel que \( \overrightarrow{AD}=\overrightarrow{AB}+\overrightarrow{AC}\) est

Le point P est soumis à une force \( \vec{F}\) d'intensité 8 Newton. La direction de cette force est

\( N65^\circ O\). Donnez la composante horizontale de \( \vec{F}\).

L'intensité et la direction d'une force constante sont données par le vecteur \( \vec{F}=(5,2,6)\).

Calculez le travail effectué par cette force si son point d'application se déplace de A=(1,-1,2) jusque B=(4,3,-1).

Soit A=(1,3) et B=(4,1). Déterminez C pour que OABC soit un parallélogramme.

Si \(\vec{a}=(-2,3,1)\), \(\vec{b}=(7,4,5)\) et \(\vec{c}=(1,-5,2)\) alors \(\vec{a}\odot(\vec{b}+\vec{c})=\)