Repères et vecteurs : Test de niveau 2

Le point P est soumis à une force \( \vec{F}\) d'intensité 8 Newton. La direction de cette force est

\( N65^\circ O\). Donnez la composante verticale de \( \vec{F}\).

Soit \(B=(3,-\frac{1}{3})\) et \(D=(-3,-2)\). Calculez les coordonnées de \(E\) pour que \( \overrightarrow{OE}=2\overrightarrow{BD}\).

Calculez \(\frac{1}{2}(2,3)-\frac{2}{5}(5,-1)\).

Soit A=(4,4,4), B=(2,2,0) et M le milieu du segment reliant A et B. Donnez l'équation de la sphère centrée en M et passant par A et B.

Donner l'équation du cercle de centre (1,2) et passant par le point (6,-1).

Déterminez  \(\vec b=(\alpha,\beta,\gamma)\) pour que les

L'expression \(||\vec{a}||\odot(\vec{b}+\vec{c})\) a-t-elle un sens ?

Soit A=(-1,5), B=(1,1) et C=(-4,2). Le point D tel que \( \overrightarrow{AB}=\overrightarrow{CD}\) est

Si \(\vec{a}=(-2,3,1)\), \(\vec{b}=(7,4,5)\) et \(\vec{c}=(1,-5,2)\) alors \(\vec{a}\odot(\vec{b}+\vec{c})=\)

Le point \(P\) est soumis à une force \( \vec{F}\) d'intensité 5 Newton. La direction de cette force est

\( N20^\circ E\). Donnez la composante verticale de \( \vec{F}\).