Auto-Math
On considère trois points P, Q et R de coordonnées P=(-1,3,-5), Q=(2,k,-1) et R=(m,0,-8), avec k et m des nombres réels.
Déterminez les valeurs des paramètres k et m telles que le triangle de sommets P, Q et R soit rectangle en P, et les côtés PQ et PR soient de même longueur.
\(m=k=\frac{15}{8}\)
\(m=k=-\frac{17}{8}\)
\(m=-100,\, k=\frac{\sqrt{11571}}{3}\)
impossible
Déterminez \(\vec b=(\alpha,\beta,\gamma)\) pour que les
\(\vec b=(1,1,2)\)
\(\vec b=(1,\frac{1}{2},-\frac{1}{3})\)
\(\vec b=(\frac{7}{12},\frac{1}{6},\frac{3}{4})\)
Si \( \vec{a}=(-2,3,1)\), \( \vec{b}=(7,4,5)\) et \(\vec{c}=(1,-5,2)\) alors \( \vec{a}\odot\vec{b}+\vec{a}\odot\vec{c}=\)
\(118\)
\(-780\)
\(-12\)
\((-16,-3,7)\)
Soit A=(1,3) et B=(2,-6). Déterminez C pour que OACB soit un parallélogramme.
\((3,-3)\)
\((1,-9)\)
\((3,9)\)
L'expression \( \vec{a}\odot(\vec{b}+\vec{c})\) a-t-elle un sens ?
oui
non
je ne sais pas
Soit A=(1,3), B=(-2,1) et C=(2,0). Le point E tel que \( \overrightarrow{CE}=\overrightarrow{CB}+\overrightarrow{CA}\) est
\((-3,4)\)
\((-1,0)\)
\((5,2)\)
\((-5,4)\)
Soit \( A=(-4,\frac{1}{2})\), \( B=(3,-\frac{1}{3})\), \( C=(-\frac{1}{2},0)\) et \( D=(-3,-2)\). Calculez les coordonnées de \(E\) pour que \(\overrightarrow{OE}=\overrightarrow{AD}-2\overrightarrow{BD}\).
\((-11,-\frac{35}{6})\)
\((13,\frac{5}{6})\)
\((30,-\frac{7}{3})\)
\((-13,-\frac{5}{6})\)
L'intensité et la direction d'une force constante sont donnéespar \( \overrightarrow{a}= (2,5)\). Calculez le travail effectué si le point d'application de la force se déplace de l'origine au point P=(4,1).
\(14\)
\((6,6)\)
\(13\)
\(40\)
Si \( \vec{a}=(-2,3,1)\) et \( \vec{b}=(7,4,5)\) alors \( \vec{a}\odot \vec{b}=\)
\(3\)
\(134\)
\(-840\)
\((-14,12,5)\)
On considère les vecteurs \((-\frac{2}{5},\frac{1}{3})\) et \((-\frac{3}{4},m)\). Déterminez \(m\) pour que ces deux vecteurs soient parallèles.
\(m=\frac{10}{9}\)
\(m=\frac{8}{45}\)
\(m=\frac{5}{8}\)
\(m=0\)