Auto-Math
Dans un repère orthonormé dont l'unité est le centimètre, calculer \(b\) pour que le point (3,b) soit à 5 cm de l'origine.
\(b=4 \mbox{ ou } b=-4\)
\(b=5\)
\(b=8\)
impossible
Déterminez \(m\) en sachant que le point \(P=(2,1,5)\) est à une distance 7 du milieu du segment joignant \(A=(1,2,3)\) à \(B=(-1,6,m)\).
\(m=19\)
\(m=2\sqrt{39}+13 \)
\(m=19 \mbox{ ou } m=-5\)
Soit \( \vec{v}=(-3,1,1)\) et \( \vec{w}=(m,m-1, 5)\). Calculez les valeurs de \(m\) pour lesquelles \(\vec{v}\) et \( \vec{w}\) sont orthogonaux.
\(m=-2\)
\(m=2\)
\(m=\frac{-5-\sqrt{85}}{-6}\)
Le point \(P\) est soumis à une force \( \vec{F}\) d'intensité 5 Newton. La direction de cette force est
\( N20^\circ E\). Donnez la composante horizontale de \( \vec{F}\).
\(5\sin{70^{\circ}}\)
\(-5\cos{70^{\circ}}\)
\(5\cos{70^{\circ}}\)
\(5\cos{20^{\circ}}\)
Soit \(B=(3,-\frac{1}{3})\) et \(D=(-3,-2)\). Calculez les coordonnées de \(E\) pour que \( \overrightarrow{OE}=2\overrightarrow{BD}\).
\((-6,-\frac{5}{3})\)
\((-18,\frac{4}{3})\)
\((-12,-\frac{10}{3})\)
Soit A=(1,3), B=(-2,1) et C=(2,0). Le point D tel que \( \overrightarrow{AD}=\overrightarrow{AB}+\overrightarrow{AC}\) est
\((0,1)\)
\((5,2)\)
\((-2,-5)\)
\((-1,-2)\)
Le point P est soumis à une force \( \vec{F}\) d'intensité 8 Newton. La direction de cette force est
\( N65^\circ O\). Donnez la composante horizontale de \( \vec{F}\).
\(-8\cos{25^{\circ}}\)
\(8\cos{25^{\circ}}\)
\(-8\cos{65^{\circ}}\)
\(8\sin{65^{\circ}}\)
L'intensité et la direction d'une force constante sont données par le vecteur \( \vec{F}=(5,2,6)\).
Calculez le travail effectué par cette force si son point d'application se déplace de A=(1,-1,2) jusque B=(4,3,-1).
\(-5\)
\(24\)
\((15,8,-18)\)
\(5\)
Soit A=(1,3) et B=(4,1). Déterminez C pour que OABC soit un parallélogramme.
\((5,4)\)
\((-3,2)\)
\((3,-2)\)
Si \(\vec{a}=(-2,3,1)\), \(\vec{b}=(7,4,5)\) et \(\vec{c}=(1,-5,2)\) alors \(\vec{a}\odot(\vec{b}+\vec{c})=\)
\((28,-42,-14)\)
\(-12\)
\(336\)
\((-48,6,-42)\)