Repères et vecteurs : Test de niveau 2

On considère trois points P, Q et R de coordonnées P=(-1,3,-5), Q=(2,k,-1) et R=(m,0,-8), avec k et m des nombres réels.

Déterminez les valeurs des paramètres k et m telles que le triangle de sommets P, Q et R soit rectangle en P, et les côtés PQ et PR soient de même longueur.

Déterminez  \(\vec b=(\alpha,\beta,\gamma)\) pour que les

Si \( \vec{a}=(-2,3,1)\)\( \vec{b}=(7,4,5)\) et \(\vec{c}=(1,-5,2)\) alors \( \vec{a}\odot\vec{b}+\vec{a}\odot\vec{c}=\)

Soit A=(1,3) et B=(2,-6). Déterminez C pour que OACB soit un parallélogramme.

L'expression \( \vec{a}\odot(\vec{b}+\vec{c})\) a-t-elle un sens ?

Soit A=(1,3), B=(-2,1) et C=(2,0). Le point E tel que \( \overrightarrow{CE}=\overrightarrow{CB}+\overrightarrow{CA}\) est

Soit \( A=(-4,\frac{1}{2})\), \( B=(3,-\frac{1}{3})\)\( C=(-\frac{1}{2},0)\) et \( D=(-3,-2)\). Calculez les coordonnées de \(E\) pour que \(\overrightarrow{OE}=\overrightarrow{AD}-2\overrightarrow{BD}\).

L'intensité et la direction d'une force constante sont donnéespar \( \overrightarrow{a}= (2,5)\). Calculez le travail effectué si le point d'application de la force se déplace de l'origine au point P=(4,1).

Si \( \vec{a}=(-2,3,1)\) et \( \vec{b}=(7,4,5)\) alors \( \vec{a}\odot \vec{b}=\)

On considère les vecteurs \((-\frac{2}{5},\frac{1}{3})\) et \((-\frac{3}{4},m)\). Déterminez \(m\) pour que ces deux vecteurs soient parallèles.