Auto-Math
Factorisez \(6x-3x^2-3\)
\(3(x+1)^2\)
\(3(1-x)^2\)
\(x^2-2x+1\)
\(-3(x-1)^2\)
Effectuez \((3a^2b^3c^2-4a^3c^4)^2\)
\(9a^4b^6c^4-16a^6c^8\)
\(9a^4b^9c^4+16a^9c^{16}-24a^5b^3c^6\)
\(9a^4b^6c^4+16a^6c^8-24a^5b^3c^6\)
\(9a^4b^6c^4+16a^6c^8-24a^6b^3c^8\)
Si P est un polynôme de degré 5 et Q un polynôme de degré 3 alors P+Q est un polynôme de degré
\(5\)
\(3\)
\(2\)
\(8\)
Effectuez \((x+\frac{1}{x})^3\)
\(\dfrac{x^9+3x^4+3x^2+1}{x^3}\)
\(\dfrac{x^6+3x^4+3x^2+1}{x^3}\)
\(\dfrac{x^6+3x^5+3x+1}{x^3}\)
\(\dfrac{x^6+1}{x^3}\)
Factorisez \(2x^3-x^2-18x+9=\)
\((2x-3)^3\)
\((2x-1)(x^2+9)\)
\((x-9)(x+9)(6x+1)\)
\((2x-1)(x-3)(x+3)\)
Factorisez \((a+b)^3-(a+b)\)
\((a+b)(a^2+2ab+b^2)\)
\((a+b)^2\)
\((a+b)(a^2+2ab+b^2-1)\)
\(a^3+b^3-a-b\)
Effectuez \((x-1)(x^2+1)-x^3+(x^2-1)(x+x^2+1)-(x^3-1)x\)
\(x^3+x^2-x+2\)
\(x^3-x^2-x-2\)
\(0\)
\(x^3-x^2+x-2\)
Quel polynôme faut-il ajouter à \(x+5\) pour obtenir \(42x^2\) ?
\(42x^2\)
impossible
\(37x\)
\(42x^2-x-5\)
\((3a+2b)^2=\)
\(9a^2+12ab+4b^2\)
\(9a^2+4b^2\)
\(9a^2+4b^2+6ab\)
\(3a^2+2b^2+12ab\)
\((x^2-1)^3=\)
\(x^6-1\)
\(-x^6+3x^4-3x^2+1\)
\(x^6-3x^4+3x^2-1\)
\(x^5-3x^4+3x^2-1\)