Auto-Math
Déterminez \(p\) pour que le reste de la division de \( x^3 +7x^2-px+4\) par \( x+2\) valle 2.
\(p=11\)
\(p=-11\)
\(p=19\)
\(p=-12\)
Le quotient du polynôme \(x^3-x^2+x-6\) par \(x-2\) vaut
\(x^3-3x^2+x-20\)
\(x^2+x+3\)
\(x^3+x^2+3x\)
\(0\)
Effectuez \((xy-1)^2\)
\(x^2y^2-1-2xy\)
\(x^2y^2+1-2xy\)
\(x^2y^2+1-xy\)
\(x^2y^2-1\)
Effectuez \((2x^3+x^2+3)(2x^2-x+1)\)
\(2x^3+2x^2-x+3\)
\(4x^5-x^3+3\)
\(4x^5+x^3+7x^2-3x+3\)
\(4x^6+x^3+7x^2-3x+3\)
Effectuez \((2x-1)^3\)
\(8x^3-1\)
\(8x^3-6x^2+6x-1\)
\(1-6x+12x^2-8x^3\)
\(8x^3-12x^2+6x-1\)
Le reste de la division de \(x^4-5x^2-x\) par \( x+1\) vaut
\(x^3-x^2-4x+3\)
\(-3\)
\(-5\)
\(-1\)
Le quotient du polynôme \(-2x^4+8x^3-16x+8\) par \(2x^2-4\) vaut
\(-x^2+4x+2\)
\(x^2-4x+2\)
\(-x^2+4x-2\)
Effectuez \(-(1+x^3+x^2)(x-1)\)
\(x^4-x^2-x+1\)
\(x^4+2x^3+x^2+x+1\)
\(1-x+x^2+x^3\)
\(-x^4+x^2-x+1\)
\(8a^3-b^6=\)
\((2a-b^ 2)(4a^2+2ab^2+b^4)\)
\((2a-b^2)(4a^2+4ab^2+b^4)\)
\((2a-b^2)^3\)
\((2a-b^3)(4a^2+2ab^3+b^6)\)
Factorisez \(x^5-8x^3+16x\)
\(x(x^2+4)^2\)
\(x(x^4+16)^2\)
\(x(x+4)^2\)
\(x(x^2-4)^2\)