Auto-Math
Soit \(p(x) = a_nx^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0\) un polynôme de degré plus grand que 1 (\(a_n \neq 0 \)). Que peut-on dire de la limite \(\displaystyle\lim_{x \rightarrow +\infty} e^{-x} p(x)\) ?
Elle vaut \(+\infty\) .
Elle vaut \(0\).
Elle n'existe pas.
Elle dépend du degré du polynôme.
Trouver l'ensemble \(S \) des \(x\) tels que \(e^{2x} + 2 e^x + 1 = 0\).
\(S = \{0\}\)
\( S = \{\ln(2)\}\)
\(S = \{\ln(2), -\ln(2)\} \)
\( S = \emptyset \)
Trouver l'ensemble \(S \) des \(x\) tels que \(\ln^2(x) - 2 \ln(x) + 1 = 0\).
\(S = \{e\} \)
\(S = \{e, e^{-1}\} \)
\(S = \{e, -e\}\)
\(S = \emptyset\)
Trouver l'ensemble \(S \) des \(x\) tels que \( x \leq 0 \mbox{ et } e^{x} = x\).
\(S = \mathbb{R}^{-}\)
\(S = \mathbb{R}_0^{-} \)
\( S = \{0\}\)
\(S = \emptyset \)
Soient \(a\), \(b \in \mathbb{R} \). Parmi les suivantes, quelle propriété est vraie ?
\( e^{-a} < 1\)
\( e^a \leq e^b \Rightarrow a < b\)
\( e^a < e^b \Rightarrow a < b \)
\(e^a < e^b \Rightarrow a > b \)
Trouver l'ensemble \(S \) des \(x\) tels que \(\ln(x) + \ln(x + 1) = 0\).
\(S =\left \{\dfrac{-1 - \sqrt{5}}{2}, \dfrac{-1 + \sqrt{5}}{2} \right\} \)
\(S =\left \{\dfrac{-1 + \sqrt{5}}{2}\right\} \)
\(S =\left \{\dfrac{-1 - \sqrt{5}}{2}\right\} \)
Calculez \(\displaystyle\lim_{\stackrel{x \rightarrow 0}{x > 0}} \ln(\sin(x))\sin(x) \).
\(0\)
\(1\)
\(\infty\)
La limite n'existe pas.
Trouver l'ensemble \(S \) des \(x\) tels que \(\ln(x^2 + x - 1) = \ln(x)\).
\( S = \emptyset\)
\(S = \{1, -1\}\)
\(S = \{-1, 2\} \)
\(S = \{1\} \)
Trouver l'ensemble \(S \) des \(x\) tels que \(e^{2x} - 2 e^x + 1 = 0 \).
\(S = \{\ln(2)\}\)
\(S = \{0\} \)
Trouver l'ensemble \(S \) des \(x\) tels que \(e^{x} + 3e^{-x} > 4\).
\(S = ]-\infty, 0[ \)
\( S = ]\ln(3), +\infty[ \)
\(S = ]-\infty, 0[ \cup ]\ln(3), +\infty[ \)
\(S = ]-\infty, 1[ \cup ]3, +\infty[\)