Auto-Math
Calculez \(\displaystyle\lim_{x\to 0}(1+x)^{1/x}\) .
\(\ln(x)\)
\(e^x\)
\(1\)
\(e\)
Trouver l'ensemble \(S \) des \(x\) tels que \(e^{3x} + e^{2x} - 2e^x = 0\).
\(S = \{0, -2, 1\} \)
\(S = \{-2, 1\}\)
\( S = \{0\} \)
\( S = \emptyset\)
Trouver l'ensemble \(S \) des \(x\) tels que \(\ln^2(x) - 2 \ln(x) + 1 = 0\).
\(S = \{e\} \)
\(S = \{e, e^{-1}\} \)
\(S = \{e, -e\}\)
\(S = \emptyset\)
Trouver l'ensemble \(S \) des \(x\) tels que \(e^{x} + 3e^{-x} > 4\).
\(S = ]-\infty, 0[ \)
\( S = ]\ln(3), +\infty[ \)
\(S = ]-\infty, 0[ \cup ]\ln(3), +\infty[ \)
\(S = ]-\infty, 1[ \cup ]3, +\infty[\)
Parmis les graphes suivants, lequel correspond à celui de la fonction \( f(x) = \dfrac{e^x + e^{-x}}{2}\) ?
Calculez \(\displaystyle\lim_{\stackrel{x \rightarrow 0}{x > 0}} x\ln(x) \).
\(1 \)
\(0\)
La limite n'existe pas.
La limite n'a pas de sens.
Trouver l'ensemble \(S \) des \(x\) tels que \(2\ln(x) = \ln(2x) \).
\(S = \{2\} \)
\(S = \{2, 0\} \)
\( S = \{\frac{1}{2}, 2\} \)
Trouver l'ensemble \(S \) des \(x\) tels que \(\ln(x) + \ln(x + 1) = 0\).
\(S =\left \{\dfrac{-1 - \sqrt{5}}{2}, \dfrac{-1 + \sqrt{5}}{2} \right\} \)
\(S =\left \{\dfrac{-1 + \sqrt{5}}{2}\right\} \)
\(S =\left \{\dfrac{-1 - \sqrt{5}}{2}\right\} \)
\( S = \emptyset \)
Soient \(a\), \(b \in \mathbb{R} \). Parmi les suivantes, quelle propriété est vraie ?
\( e^{-a} < 1\)
\( e^a \leq e^b \Rightarrow a < b\)
\( e^a < e^b \Rightarrow a < b \)
\(e^a < e^b \Rightarrow a > b \)
Soient \(a\), \(b \in \mathbb{R}_{0}^{+} \). Parmi les suivantes, quelle propriété est vraie ?
\(\ln(a) < \ln(b) \Rightarrow a > b\)
\(\ln(1/a) < \ln(1/b) \Rightarrow a > b\)
\(\ln(a) > 0\)
\(\ln(0) = 0\)