Auto-Math
Soient \(a\), \(b \in \mathbb{R} \). Parmi les suivantes, quelle propriété est vraie ?
\( e^{-a} < 1\)
\( e^a \leq e^b \Rightarrow a < b\)
\( e^a < e^b \Rightarrow a < b \)
\(e^a < e^b \Rightarrow a > b \)
Trouver l'ensemble \(S \) des \(x\) tels que \(\ln(-x) + \ln(x) = 0\).
\(S = \{-1\} \)
\( S = \{1\}\)
\( S = \{0\} \)
\( S = \emptyset \)
Trouver l'ensemble \(S \) des \(x\) tels que \(e^{x} + 3e^{-x} > 4\).
\(S = ]-\infty, 0[ \)
\( S = ]\ln(3), +\infty[ \)
\(S = ]-\infty, 0[ \cup ]\ln(3), +\infty[ \)
\(S = ]-\infty, 1[ \cup ]3, +\infty[\)
Trouver l'ensemble \(S \) des \(x\) tels que \(e^{e^x} = 1\).
\(S = \mathbb{R}\)
\( S = \mathbb{R}^{+} \)
\(S = \{0\}\)
\( S = \emptyset\)
Calculez \(\displaystyle\lim_{\stackrel{x \rightarrow 0}{x > 0}} x\ln(x) \).
\(1 \)
\(0\)
La limite n'existe pas.
La limite n'a pas de sens.
Trouver l'ensemble \(S \) des \(x\) tels que \(\ln(x^2 + x - 1) = \ln(x)\).
\(S = \{1, -1\}\)
\(S = \{-1, 2\} \)
\(S = \{1\} \)
Trouver l'ensemble \(S \) des \(x\) tels que \( x \leq 0 \mbox{ et } e^{x} = x\).
\(S = \mathbb{R}^{-}\)
\(S = \mathbb{R}_0^{-} \)
\( S = \{0\}\)
\(S = \emptyset \)
Trouver l'ensemble \(S \) des \(x\) tels que \(\ln(x) + \ln(x + 1) = 0\).
\(S =\left \{\dfrac{-1 - \sqrt{5}}{2}, \dfrac{-1 + \sqrt{5}}{2} \right\} \)
\(S =\left \{\dfrac{-1 + \sqrt{5}}{2}\right\} \)
\(S =\left \{\dfrac{-1 - \sqrt{5}}{2}\right\} \)
Trouver l'ensemble \(S \) des \(x\) tels que \(\ln(x^2 - 3x - 3) > 0\).
\(S = ]0, +\infty[ \)
\( S = ]-\infty, 1[ \cup ]2,+ \infty[\)
\(S = ]-\infty, -1[ \cup ]4, +\infty[ \)
\(S = ]4, +\infty[ \)
Trouver l'ensemble \(S \) des \(x\) tels que \(\log_2(x) = 2\log_2(3) - \log_2(x - 5) + 2\)
\( S = \{9\} \)
\(S = \{-4\} \)
\(S = \{-4, 9\} \)
\( S = \mathbb{R} \)