Auto-Math
Trouvez l'ensemble \(S\) des \(x\) tels que \(\log_{\frac{1}{4}} (x) > 3\).
\(S = \left]0, \dfrac{1}{64}\right[ \)
\(S =\left ]\dfrac{1}{64}, +\infty\right[\)
\( S =\left ]-\infty, \dfrac{1}{64}\right[\)
\(S = ]-\infty, 64[ \)
Trouvez l'ensemble \(S\) des \(x\) tels que \( \dfrac{-1}{9} + 3^{x-2} = 0 \).
\(S = \{0\} \)
\(S = \{\ln 3\} \)
\(S = \{4\}\)
\(S = \{-4\} \)
Calculez \(\displaystyle\lim_{x \to 0} \dfrac{e^x - e^{-x}}{\sin(x)} \).
\(0\)
\(2\)
\(\dfrac{1}{2} \)
La limite n'existe pas.
Calculez \(\displaystyle\lim_{\stackrel{x \to 0}{x > 0}} \sin(\ln(x)) \).
\(+\infty\)
\(-\infty \)
Trouvez l'ensemble \(S\) des \(x\) tels que \(\log_3(x) \geq -3 \).
\(S = \left\{\dfrac{1}{27}\right\}\)
\(S =\left ]0, \dfrac{1}{27}\right] \)
\(S = \left]\dfrac{1}{27}, +\infty\right[ \)
\(S =\left [\dfrac{1}{27}, +\infty\right[ \)
Ecrivez l'expression suivante sans utiliser de logarithme : \(\log_9{(\sqrt{3})}\) .
\(\dfrac{1}{4}\)
\(\dfrac{1}{2}\)
\(4\)
Trouvez l'ensemble \(S\) des \(x\) tels que \(16 - e^{2x} = 0 \).
\(S = \{2\}\)
\( S = \{\ln(4)\}\)
\( S = \{\ln(2)\}\)
\(S = \{4\} \)
Trouvez l'ensemble \(S\) des \(x\) tels que \(\log_4(x) < 4 \).
\(S = ]-\infty, 256[ \)
\( S = ]256, +\infty[ \)
\(S = \{256\}\)
\(S = ]0, 256[ \)
Trouvez l'ensemble \(S\) des \(x\) tels que \(\log_{\frac{1}{2}}(x) \leq -10 \).
\(S = \{1024\} \)
\(S = [1024, +\infty[\)
\(S = ]-\infty, -1024] \)
\(S = \emptyset\)
Trouvez l'ensemble \(S\) des \(x\) tels que \(\log_{\frac{1}{4}}(x) > -3\) .
\(S = \{64\} \)
\(S = ]-64, +\infty[ \)
\(S = ]0,64[\)