Auto-Math
Trouvez l'ensemble \(S\) des \(x\) tels que \(16 - e^{2x} = 0 \).
\(S = \{2\}\)
\( S = \{\ln(4)\}\)
\( S = \{\ln(2)\}\)
\(S = \{4\} \)
Calculer \(\displaystyle\lim_{x \to +\infty} e^x \).
\(0\)
\(+\infty\)
\(-\infty\)
\(1 \)
Trouvez l'ensemble \(S\) des \(x\) tels que \(4^x < \dfrac{1}{4} \).
\(S = ]-1,+\infty[ \)
\(S = ]-\infty, -1]\)
\(S = ]-\infty, -1[ \)
\(S = \{-1\}\)
Calculer \(\displaystyle\lim_{x \to 0} e^x \).
\(1\)
\(-1\)
Donnez le domaine de définition de la fonction \(f(x)=\log_2{(x^2-2x+1)} \).
\(\mathbb{R} \)
\(\mathbb{R}\setminus\{1\}\)
\(\mathbb{R}_0^+ \)
\(]1, +\infty[ \)
Calculez la dérivée de la fonction \(f(x)=e^{\mbox{tg}(x)} \).
\(e^{\mbox{tg}(x)}\)
\(\dfrac{e^{\mbox{tg}(x)}}{\cos^2(x)}\)
\(\dfrac{e^{\mbox{tg}(x)}}{\sin^2(x)}\)
\(e^{\cos^2(x)} \)
Trouvez l'ensemble \(S\) des \(x\) tels que \(4^x \leq 16\).
\(S = ]-\infty, 2] \)
\(S = ]-\infty, 2[\)
\(S = [2, +\infty[ \)
Calculez \(\displaystyle\lim_{\stackrel{x \to 0}{x > 0}} x\ln(x) \).
Trouvez l'ensemble \(S\) des \(x\) tels que \(\log_{\frac{1}{2}}(x) \leq -5 \).
\(S = [32, +\infty[ \)
\(S = ]-\infty, -32] \)
\(S = \{32\}\)
\(S = \emptyset\)
Trouvez l'ensemble \(S\) des \(x\) tels que \(\ln(3 + x) = \ln(x) \).
\( S = \mathbb{R}^{+}_{0}\)
\(S = \mathbb{R}^{+}\)
\(S = \mathbb{R} \)
\(S = \emptyset \)