Auto-Math
Trouvez l'ensemble \(S\) des \(x\) tels que \(3^x \leq 243 \).
\(S = [3, +\infty[\)
\(S = ]-\infty, 3[\)
\(S = ]-\infty, 5[ \)
\( S = ]-\infty, 5]\)
Donnez le domaine de définition de la fonction \(f(x)=xe^{1/x}\) .
\( \mathbb{R} \)
\( \mathbb{R}^{+} \)
\(\mathbb{R}_0\)
\(\mathbb{R}_0^{+} \)
Parmis les graphes suivants, quel est celui de la fonction \(f(x)=e^{-x}\) ?
Trouvez l'ensemble \(S\) des \(x\) tels que \(\log_2(x) = 2\log_2(3) - \log_2(x - 5) + 2 \).
\(S = \{9, -4\}\)
\(S = \{-4\}\)
\( S = \{9\} \)
\(S = \{2\} \)
Donnez le domaine de définition de la fonction \(f(x)=\log_3{(x^2-x-6)} \).
\(]3, +\infty[ \)
\(\mathbb{R} \)
\(\mathbb{R}_0^+ \)
\( ]-\infty;-2[\, \cup\, ]3;+\infty[ \)
Trouvez l'ensemble \(S\) des \(x\) tels que \(\log_{\frac{1}{2}}(x) \leq -5 \).
\(S = [32, +\infty[ \)
\(S = ]-\infty, -32] \)
\(S = \{32\}\)
\(S = \emptyset\)
Trouvez l'ensemble \(S\) des \(x\) tels que \(2^x < 8 \).
\(S = \{3\}\)
\(S = ]-\infty, 3[ \)
\(S = ]-\infty, 3]\)
\(S = ]3,+\infty[ \)
Trouvez l'ensemble \(S\) des \(x\) tels que \(\log_{\frac{1}{3}}(x) > -4\).
\(S = \{81\}\)
\(S = ]-81, +\infty[ \)
\(S = ]-\infty, 81[ \)
\(S = ]0,81[\)
Calculer \(\displaystyle\lim_{x \to +\infty} 1 - e^{-x} \).
\(0\)
\(1\)
\(-\infty\)
\(+\infty \)
Trouvez l'ensemble \(S\) des \(x \) tels que \(\log_{\frac{1}{3}}(x) \geq -5 \).
\(S = \{243\} \)
\(S = ]-\infty, 243] \)
\(S = [-243, +\infty[ \)