Auto-Math
Trouvez l'ensemble \(S\) des \(x\) tels que \( (-1)^x = -1 \).
\(S = \emptyset\)
\(S = \{n \in \mathbb{Z} ~:~ n \textrm{ est impair.} \}\)
\(S = \{1\}\)
\(S = \{n \in \mathbb{Z} ~:~ n \textrm{ est pair.} \} \)
Soient \(a\) , \(b\) deux nombres réels. Parmi les propriétés suivantes, laquelle est fausse ?
\(e^{a + b} = e^ae^b\)
\(e^{ab} = (e^{a})^{b}\)
\(e^{ab} = e^ae^b\)
\(\dfrac{e^a}{e^b} = e^{a-b} \)
Ecrivez l'expression suivante sans utiliser de logarithme : \(\log_9{(\sqrt{3})}\) .
\(\dfrac{1}{4}\)
\(\dfrac{1}{2}\)
\(2\)
\(4\)
Calculez \(\displaystyle\lim_{x \to +\infty} \ln(x)\) .
\(0\)
\(+\infty\)
\(-\infty\)
\(1 \)
Trouvez l'ensemble \(S\) des \(x\) tels que \(\log_4(x) < 5\).
\(S = \{1024\} \)
\(S = ]-\infty, 1024[ \)
\(S = ]0, 1024[ \)
\( S = ]1024, +\infty[ \)
Trouvez l'ensemble \(S\) des \(x\) tels que \(\log_{\frac{1}{2}}(x) \leq -4 \).
\(S = \{16\}\)
\(S = [16, +\infty[ \)
\(S = ]-\infty, -16] \)
Trouvez l'ensemble des éléments \(x \in \mathbb{R} \) tels que \(e^{\ln(x)} = x \).
\(\mathbb{R} \)
\(\mathbb{R}_{0}^{+}\)
\(\mathbb{R}^{+}\)
\(\emptyset \)
Trouvez \(x\) si \((-2)^x = \dfrac{ 1 }{ 8 } \).
\(x = 4\)
\( x = -3\)
\(x = -1\)
Impossible
Trouvez l'ensemble \(S\) des \(x\) tels que \(\log_4(x) \leq 4 \).
\(S = ]-\infty, 256] \)
\(S = [256, +\infty[ \)
\( S = ]0, 256] \)
\(S = \{256\}\)
Trouvez l'ensemble \(S\) des \(x\) tels que \(\log_{\frac{1}{3}}(x) > -4\).
\(S = \{81\}\)
\(S = ]-81, +\infty[ \)
\(S = ]-\infty, 81[ \)
\(S = ]0,81[\)