Auto-Math
Soient \(a\) , \(b\) deux nombres réels strictement positifs. Parmi les propriétés suivantes, laquelle est vraie ?
\(\ln(a - b) = \ln(a / b)\)
\(\ln(a) + \ln(b) = \ln(ab)\)
\(\ln(a + b) = \ln(ab) \)
\(\ln(a) + \ln(b) = \ln(a + b) \)
Trouvez l'ensemble \(S\) des \(x\) tels que \( \log_x(27) = -3 \).
\(S = \{\ln(-9)\}\)
\( S = \left\{\dfrac{1}{3}\right\}\)
\(S = \{3\}\)
\(S = \left\{3, \dfrac{1}{3}\right\} \)
Trouvez l'ensemble \(S\) des \(x\) tels que \(\log_{\frac{1}{4}} (x) > 3\).
\(S = \left]0, \dfrac{1}{64}\right[ \)
\(S =\left ]\dfrac{1}{64}, +\infty\right[\)
\( S =\left ]-\infty, \dfrac{1}{64}\right[\)
\(S = ]-\infty, 64[ \)
Déterminez le domaine de dérivabilité de la fonction \(f(x)= \ln(|x|)\) (c'est-à-dire l'ensemble des points où cette fonction est dérivable).
\(\mathbb{R}_{0} \)
\(\mathbb{R}\)
\(\mathbb{R}_{0}^{+} \)
\(\mathbb{R}_{0}^{-} \)
Trouvez l'ensemble \(S\) des \(x\) tels que \(\log_{\frac{1}{4}}(x) > -3\) .
\(S = \{64\} \)
\(S = ]-64, +\infty[ \)
\(S = ]0,64[\)
Trouvez \(x\) si \(5^x = 625 \).
\(x = -3\)
\(x = 2\)
\(x = 4 \)
Impossible
Donnez le domaine de définition de la fonction \(f(x)=\log_{\frac{1}{2}}{(-x^2-2x+3)} \).
\(]-3,1[\)
\( ]-\infty, -3[ \cup ]1, +\infty[\)
\( ]-\infty, -3[ \)
\( ]1, +\infty[ \)
Calculer \(\displaystyle\lim_{x \to +\infty} \ln\left( \dfrac{1}{x} \right) \).
\(0\)
\(-\infty \)
\(+\infty\)
La limite n'existe pas.
Trouvez \(x \) si \((-2)^x = \dfrac{ 1 }{ 8 } \).
\(x = -4\)
\( x = -3\)
\(x = -1\)
Trouvez l'ensemble \(S\) des \(x\) tels que \(\log_4(x) < 5\).
\(S = \{1024\} \)
\(S = ]-\infty, 1024[ \)
\(S = ]0, 1024[ \)
\( S = ]1024, +\infty[ \)