Auto-Math
Factorisez \(6x-3x^2-3\)
\(3(x+1)^2\)
\(3(1-x)^2\)
\(x^2-2x+1\)
\(-3(x-1)^2\)
\((x^2-1)^3=\)
\(x^6-1\)
\(-x^6+3x^4-3x^2+1\)
\(x^6-3x^4+3x^2-1\)
\(x^5-3x^4+3x^2-1\)
Factorisez \(a^3-b^3-a^2+b^2\)
\((a-b)(a^2+ab+b^2-a+b)\)
\((a-b)(a^2+ab+b^2-a-b)\)
\((a^2-b^2)(a-b-1)\)
\(a-b\)
Effectuez \((x^4+\frac{a}{4})^2\)
\(x^8+\frac{a^2}{16}\)
\(x^8+\frac{a^2}{16}+\frac{1}{4}ax^4\)
\(x^{16}+\frac{a^2}{4}+\frac{1}{2}ax^4\)
\(x^8+\frac{a^2}{16}+\frac{1}{2}ax^4\)
Effectuez \((2x^4-3)^3\)
\(8x^{12}-36x^8+54x^4-27\)
\(8x^{12}-27\)
\(8x^7-36x^6+54x^4-27\)
\(8x^{12}+36x^8+54x^4+27\)
Factorisez \(2(x-1)(a+b)+a(1-x)\)
\((x-1)^2(a+2b)\)
\((x-1)(a+2b)\)
\((x-1)(3a+2b)\)
\(a+2b\)
Le reste de la division de \( x-x^3-1-2x^2\) par \(4+2x\) vaut
\(-\frac{1}{2}x^2+\frac{1}{2}\)
\(-2\)
\(0\)
\(-3\)
Factorisez \(a-2b-ax+2bx\)
\((a-2b)(1-x)\)
\((a-2b)(-x)\)
\((a+2bx)(a-2bx)\)
\((a-2b)(1+x)\)
Factorisez \(ac+bc+ad+bd\)
\((a+d)(b+c)\)
\(a(b+c+d)\)
impossible
\((a+b)(c+d)\)
\((-x+2)(-x-2)=\)
\(x^2-4\)
\(4-x^2\)
\((x-4)^2\)
\(x^2+4\)