Auto-Math
Le reste de la division de \(x^4-3x+3x^3-1\) par \(x^2-1\) est
\(-1\)
\(1\)
\(0\)
\(x^2+3x+1\)
Factorisez \(x^3+4x^2+5x+6\)
\((x+3)(x^2+x+2)\)
\((x-3)(x^2+x+2)\)
\((x^3+4x^2)(5x+6)\)
\(x(x^2+4x+5)+6\)
Factorisez \(ax^8-a\)
\(a(x^4-1)^2\)
\(a(x^2-1)^4\)
\(a(x-1)(x+1)(x^2+1)(x^4+1)\)
\(a(x-1)^8\)
Factorisez \((a+b)^3-(a+b)\)
\((a+b)(a^2+2ab+b^2)\)
\((a+b)^2\)
\((a+b)(a^2+2ab+b^2-1)\)
\(a^3+b^3-a-b\)
Factorisez \(a^3-b^3-a^2+b^2\)
\((a-b)(a^2+ab+b^2-a+b)\)
\((a-b)(a^2+ab+b^2-a-b)\)
\((a^2-b^2)(a-b-1)\)
\(a-b\)
Factorisez \(3(2-x)^2-3(x-2)^3\)
\(3(2-x)^2(7-3x)\)
\(3-x\)
\(3(2-x)^2(3-x)\)
\(-1-x\)
\((3a+2b)^2=\)
\(9a^2+12ab+4b^2\)
\(9a^2+4b^2\)
\(9a^2+4b^2+6ab\)
\(3a^2+2b^2+12ab\)
Si P est un polynôme de degré 5 et Q un polyôme de degré 3 alors P*Q est un polynôme de degré
\(5\)
\(8\)
\(15\)
\(2\)
Si P est un polynôme de degré 5 et Q un polynôme de degré 3 alors P+Q est un polynôme de degré
\(3\)
Factorisez \(ac+bc+ad+bd\)
\((a+d)(b+c)\)
\(a(b+c+d)\)
impossible
\((a+b)(c+d)\)