Auto-Math
La division de \( x^4-3x+3x^3-1\) par \( x^2-1\) est-elle exacte ?
oui
non
je ne sais pas
Factorisez \(2x^3-x^2-18x+9=\)
\((2x-3)^3\)
\((2x-1)(x^2+9)\)
\((x-9)(x+9)(6x+1)\)
\((2x-1)(x-3)(x+3)\)
Effectuez \((2x^4-3)^3\)
\(8x^{12}-36x^8+54x^4-27\)
\(8x^{12}-27\)
\(8x^7-36x^6+54x^4-27\)
\(8x^{12}+36x^8+54x^4+27\)
\((3a+2b)^2=\)
\(9a^2+12ab+4b^2\)
\(9a^2+4b^2\)
\(9a^2+4b^2+6ab\)
\(3a^2+2b^2+12ab\)
Factorisez \(x^7-3x^5+3x^3-x\)
\(x(x-1)^3(x+1)^3\)
\(x(x^2-1)(x^4-3x^2-1)\)
\(x(x^2-1)(x^4-3x^3+x^2+1)\)
\(x^6-3x^4+3x^2-1\)
\((x^2-1)^3=\)
\(x^6-1\)
\(-x^6+3x^4-3x^2+1\)
\(x^5-3x^4+3x^2-1\)
Le reste de la division de \( x-x^3-1-2x^2\) par \(4+2x\) vaut
\(-\frac{1}{2}x^2+\frac{1}{2}\)
\(-2\)
\(0\)
\(-3\)
Effectuez \(3x-(2x^2+3)-[(2x+3x^2)-x+1]-(x-2)\)
\(-5x^2+x\)
\(-5x^2+x-2\)
\(x^2-x+2\)
\(-5x^2+x-5\)
\((-x+2)(-x-2)=\)
\(x^2-4\)
\(4-x^2\)
\((x-4)^2\)
\(x^2+4\)
Effectuez \((-4x^2+2y^3)^2\)
\(16x^4+4y^5-16x^2y^3\)
\(16x^4+4y^6-16x^2y^3\)
\(4y^6-16x^4\)
\(4x^4+2y^6-8x^2y^3\)