Auto-Math
\((x^2-1)(x^2+1)=\)
\(x^4-2x^2+1\)
\(x^4+1\)
\(x^4-1\)
\(2x^2-1\)
Déterminez \(p\) pour que le reste de la division de \(2x^3-px+2p+1\) par \(x-1\) valle 4.
\(p=\frac{129}{2}\)
\(p=\frac{5}{3}\)
\(p=1\)
\(p=-3\)
\((a^3-b)(a^3+b)=\)
\(a^6+b^2-2a^3b\)
\(a^5-b^2\)
\(a^6+b^2\)
\(a^6-b^2\)
Le polynôme \( 4x^2+2x-12\) est divisible par
\(x-2\)
\(2+x\)
\(x-1\)
\(3+x\)
Factorisez \( (x+y)(3a+2)-(x+y)\)
\((x+y)(3a+1)\)
\((x+y)^2(3a+2)\)
\(3a+2\)
\(3ax+x+3ay+y\)
Effectuez \((2x^3+x^2+3)(2x^2-x+1)\)
\(2x^3+2x^2-x+3\)
\(4x^5-x^3+3\)
\(4x^5+x^3+7x^2-3x+3\)
\(4x^6+x^3+7x^2-3x+3\)
Le polynôme \( x^2-3x+2\) est divisible par
\(x+1\)
\(x+2\)
\(x-5\)
L'évaluation du polynôme \(P(x)= -3x^2+x-4\) en \(x=0\) vaut
\(0\)
\(-3x^ 2+x\)
\(-4\)
\(4\)
Factorisez \(x^2+5x+6\)
\((x-2)(x-3)\)
\((x+2)(x+3)\)
\((x+2)(x-3)\)
impossible
Effectuez \((2x-3)^2\)
\(4x^2+9-12x\)
\(4x^2+9-6x\)
\(2x^2+9-12x\)
\(4x^2-9\)