Auto-Math
Factorisez \(x^2+5x+6\)
\((x-2)(x-3)\)
\((x+2)(x+3)\)
\((x+2)(x-3)\)
impossible
Effectuez \(-(1+x^3+x^2)(x-1)\)
\(x^4-x^2-x+1\)
\(x^4+2x^3+x^2+x+1\)
\(1-x+x^2+x^3\)
\(-x^4+x^2-x+1\)
Déterminez \(p\) pour que la division de \( x^3-x+p\) par \( x-2\) soit exacte.
\(p=-6\)
\(p=6\)
\(p=2\)
\(p=0\)
L'évaluation du polynôme \(P(x)= -3x^2+x-4\) en \(x=0\) vaut
\(0\)
\(-3x^ 2+x\)
\(-4\)
\(4\)
\((\sqrt{3}-\sqrt{2})^2=\)
\(5-2\sqrt{5}\)
\(1\)
\(5-\sqrt{6}\)
\(5-2\sqrt{6}\)
\((2x-1)(2x+1)=\)
\(4x^2-4x+1\)
\(4x^2-1\)
\(4x^2+1\)
\(2x^2-1\)
Le quotient du polynôme \(-2x^4+8x^3-16x+8\) par \(2x^2-4\) vaut
\(-x^2+4x+2\)
\(x^2-4x+2\)
\(-x^2+4x-2\)
Le polynôme \( 4x^2+2x-12\) est divisible par
\(x-2\)
\(2+x\)
\(x-1\)
\(3+x\)
\((a^3-b)(a^3+b)=\)
\(a^6+b^2-2a^3b\)
\(a^5-b^2\)
\(a^6+b^2\)
\(a^6-b^2\)
\(x^3+8=\)
\((x+2)(x^2+2x+4)\)
\((x+2)^3\)
\((x-2)(x^2-2x+4)\)
\((x+2)(x^2-2x+4)\)