Auto-Math
Calculez \(\displaystyle\lim_{x\to 0}(1+x)^{1/x}\) .
\(\ln(x)\)
\(e^x\)
\(1\)
\(e\)
Trouver l'ensemble \(S \) des \(x\) tels que \(\ln(2x^2 + x) = 0 \).
\( S =\left \{\dfrac{1}{2}\right\} \)
\(S =\left \{0, \dfrac{-1}{2}\right\} \)
\(S =\left \{0, \dfrac{1}{2}\right\} \)
\( S = \left\{\dfrac{1}{2}, -1\right\} \)
Calculez \(\displaystyle\lim_{\stackrel{x \rightarrow 0}{x > 0}} \ln(\sin(x))\sin(x) \).
\(0\)
\(\infty\)
La limite n'existe pas.
Trouver l'ensemble \(S \) des \(x\) tels que \(e^{2x} + 2 e^x + 1 = 0\).
\(S = \{0\}\)
\( S = \{\ln(2)\}\)
\(S = \{\ln(2), -\ln(2)\} \)
\( S = \emptyset \)
Calculez \(\displaystyle\lim_{x \rightarrow +\infty} \frac{\ln(x)}{x} \).
\(+\infty\)
Trouver l'ensemble \(S \) des \(x\) tels que \(\log_2(x) = 2\log_2(3) - \log_2(x - 5) + 2\)
\( S = \{9\} \)
\(S = \{-4\} \)
\(S = \{-4, 9\} \)
\( S = \mathbb{R} \)
Parmis les graphes suivants, lequel correspond à celui de la fonction \( f(x) = \dfrac{e^x + e^{-x}}{2}\) ?
Trouver l'ensemble \(S \) des \(x\) tels que \(\ln(x) + \ln(x + 1) = 0\).
\(S =\left \{\dfrac{-1 - \sqrt{5}}{2}, \dfrac{-1 + \sqrt{5}}{2} \right\} \)
\(S =\left \{\dfrac{-1 + \sqrt{5}}{2}\right\} \)
\(S =\left \{\dfrac{-1 - \sqrt{5}}{2}\right\} \)
Trouver l'ensemble \(S \) des \(x\) tels que \(e^{e^x} = 1\).
\(S = \mathbb{R}\)
\( S = \mathbb{R}^{+} \)
\( S = \emptyset\)
Calculez \(\displaystyle\lim_{\stackrel{x \rightarrow 0}{x > 0}} x\ln(x) \).
\(1 \)
La limite n'a pas de sens.