Auto-Math
Donnez le domaine de définition de la fonction \(f(x)=\log_2{(x-5)} \).
\(\mathbb{R}\setminus\{5\} \)
\( \mathbb{R}_0^+ \setminus \{5\} \)
\(\mathbb{R}_0^+ \)
\(]5, +\infty[ \)
Calculer \(\displaystyle\lim_{x \to +\infty} e^x \).
\(0\)
\(+\infty\)
\(-\infty\)
\(1 \)
Calculer \(\displaystyle\lim_{x \to 0} e^x \).
\(1\)
\(-1\)
Trouvez \(x\) si \((-2)^x = \dfrac{ 1 }{ 8 } \).
\(x = 4\)
\( x = -3\)
\(x = -1\)
Impossible
Calculez la dérivée de la fonction \(f(x)= e^{3x^2} \).
\(e^{3x^2}\)
\(6xe^{3x^2} \)
\(3x^2e^{3x^2}\)
\(6x \)
Soient \(a\) , \(b\) deux nombres réels. Parmi les propriétés suivantes, laquelle est fausse ?
\(e^{a + b} = e^ae^b\)
\(e^{ab} = (e^{a})^{b}\)
\(e^{ab} = e^ae^b\)
\(\dfrac{e^a}{e^b} = e^{a-b} \)
Trouvez \(x\) si \((-2)^x = 4 \).
\(x = -2\)
\(x = 2\)
Trouvez l'ensemble \(S\) des \(x\) tels que \(\log_4(x) < 5\).
\(S = \{1024\} \)
\(S = ]-\infty, 1024[ \)
\(S = ]0, 1024[ \)
\( S = ]1024, +\infty[ \)
Trouvez \(x\) si \((-2)^x = 8 \).
\( x = -1\)
\(x = 3\)
\(x = -4\)
Trouvez l'ensemble \(S\) des \(x\) tels que \(\ln(x) > 0 \).
\(S = ]0, +\infty[ \)
\(S = ]1, +\infty[ \)
\(S = ]-\infty, 1[\)
\(S = ]-\infty, 0[ \)