Auto-Math
Ecrivez l'expression suivante sans utiliser de logarithme : \(\log_9{(\sqrt{3})}\) .
\(\dfrac{1}{4}\)
\(\dfrac{1}{2}\)
\(2\)
\(4\)
Donnez le domaine de définition de la fonction \(f(x)=\log_2{(x^2-2x+1)} \).
\(\mathbb{R} \)
\(\mathbb{R}\setminus\{1\}\)
\(\mathbb{R}_0^+ \)
\(]1, +\infty[ \)
Soient \(a\) , \(b\) deux nombres réels strictement positifs. Parmi les propriétés suivantes, laquelle est vraie ?
\(\ln(a - b) = \ln(a / b)\)
\(\ln(a) + \ln(b) = \ln(ab)\)
\(\ln(a + b) = \ln(ab) \)
\(\ln(a) + \ln(b) = \ln(a + b) \)
Trouvez l'ensemble \(S\) des \(x\) tels que \(3^x \leq 243 \).
\(S = [3, +\infty[\)
\(S = ]-\infty, 3[\)
\(S = ]-\infty, 5[ \)
\( S = ]-\infty, 5]\)
Trouvez l'ensemble \(S\) des \(x\) tels que \(2^x \leq \dfrac{1}{16} \).
\(S = ]-\infty, -4] \)
\(S = ]-\infty, -4[ \)
\(S = [-4,+\infty[ \)
\(S = \{-4\} \)
Soit \(f : \mathbb{R} \to \mathbb{R}_{0}^{+}\) une fonction strictement positive et dérivable. Calculez \( (\ln(f(x)))' \), la dérivée de \(\ln(f) \).
\(\dfrac{f(x)}{f'(x)}\)
\(f(x)f'(x)\)
\(\dfrac{f'(x)}{f(x)}\)
La fonction \(\ln(f) \) n'est pas dérivable.
Trouvez \(x\) si \((-3)^x = \dfrac{ 1 }{ 81 } \).
\(x = 1\)
\( x = -4 \)
\(x = -1\)
Impossible
Trouvez l'ensemble \(S\) des \(x\) tels que \(\log_4(x) < 5\).
\(S = \{1024\} \)
\(S = ]-\infty, 1024[ \)
\(S = ]0, 1024[ \)
\( S = ]1024, +\infty[ \)
Donnez le domaine de définition de la fonction \(f(x)=\log_3{(x^2-x-6)} \).
\(]3, +\infty[ \)
\( ]-\infty;-2[\, \cup\, ]3;+\infty[ \)
Trouvez l'ensemble \(S\) des \(x\) tels que \(2^x < 8 \).
\(S = \{3\}\)
\(S = ]-\infty, 3[ \)
\(S = ]-\infty, 3]\)
\(S = ]3,+\infty[ \)