Auto-Math
Calculez la dérivée de la fonction \(f(x)= e^{3x^2} \).
\(e^{3x^2}\)
\(6xe^{3x^2} \)
\(3x^2e^{3x^2}\)
\(6x \)
Trouvez l'ensemble \(S\) des \(x\) tels que \(\log_3(x) \geq -3 \).
\(S = \left\{\dfrac{1}{27}\right\}\)
\(S =\left ]0, \dfrac{1}{27}\right] \)
\(S = \left]\dfrac{1}{27}, +\infty\right[ \)
\(S =\left [\dfrac{1}{27}, +\infty\right[ \)
Trouvez l'ensemble \(S\) des \(x\) tels que \(\log_2(x) = 2\log_2(3) - \log_2(x - 5) + 2 \).
\(S = \{9, -4\}\)
\(S = \{-4\}\)
\( S = \{9\} \)
\(S = \{2\} \)
Trouvez l'ensemble \(S\) des \(x\) tels que \(\ln(x) > 0 \).
\(S = ]0, +\infty[ \)
\(S = ]1, +\infty[ \)
\(S = ]-\infty, 1[\)
\(S = ]-\infty, 0[ \)
Trouvez \(x\) si \((-2)^x = \dfrac{ 1 }{ 8 } \).
\(x = 4\)
\( x = -3\)
\(x = -1\)
Impossible
Ecrivez l'expression suivante sans utiliser de logarithme : \(\log_4{\left(\dfrac{1}{64}\right)} \).
\(-3\)
\(3\)
\(\dfrac{1}{3} \)
\(4\)
Trouvez l'ensemble \(S\) des \(x\) tels que \(\log_4(x) < 5\).
\(S = \{1024\} \)
\(S = ]-\infty, 1024[ \)
\(S = ]0, 1024[ \)
\( S = ]1024, +\infty[ \)
Trouvez l'ensemble \(S\) des \(x\) tels que \(\log_4(x) < 4 \).
\(S = ]-\infty, 256[ \)
\( S = ]256, +\infty[ \)
\(S = \{256\}\)
\(S = ]0, 256[ \)
Calculer \(\displaystyle\lim_{x \to +\infty} 1 - e^{-x} \).
\(0\)
\(1\)
\(-\infty\)
\(+\infty \)
Trouvez l'ensemble \(S\) des \(x\) tels que \(2^x \leq \dfrac{1}{16} \).
\(S = ]-\infty, -4] \)
\(S = ]-\infty, -4[ \)
\(S = [-4,+\infty[ \)
\(S = \{-4\} \)