Auto-Math
Résolvez l'équation \(\cos x = \cos \dfrac{\pi}{3} \).
\( S=\left\{\dfrac{\pi}{3}\right\} \)
\( S=\left\{\dfrac{\pi}{3}+2k\pi,\, -\dfrac{\pi}{3}+2k\pi;\, k\in\mathbb{Z}\right\} \)
\( S=\left\{\dfrac{\pi}{3},\, -\dfrac{\pi}{3}\right\} \)
\( S=\left\{\dfrac{\pi}{3}+2k\pi,\, \dfrac{2\pi}{3}+2k\pi;\, k\in\mathbb{Z}\right\} \)
\(\sin ({\pi \over 2}+a)= \)
\( \cos a \)
\(\sin a \)
\( 1+\sin a \)
\( -\cos a \)
Donnez la valeur de \(tg\,\left(\dfrac{2\pi}{3}\right) \).
\( 60 \)
\( \sqrt{3} \)
\( -\sqrt{3} \)
\( -\dfrac{\sqrt{3}}{3} \)
Déterminez à l'aide du cercle trigonométrique la valeur de \(\cos\dfrac{11\pi}{6} \).
\( \dfrac{1}{2} \)
\( -\dfrac{1}{2} \)
\( \dfrac{\sqrt{3}}{2} \)
\( -\dfrac{\sqrt{3}}{2} \)
Déterminez à l'aide du cercle trigonométrique la valeur de \( \sin\dfrac{3\pi}{4} \).
\( \dfrac{\sqrt{2}}{2} \)
\( -\dfrac{\sqrt{2}}{2} \)
Sans calculatrice, calculez \(\sin\theta\) si \(\theta=\dfrac{5\pi}{6} \).
\(\dfrac{\sqrt{3}}{2} \)
\( 150 \)
Si \(tg\, \theta=\dfrac{5}{12} \) alors \(\cos\theta=\)
\( \dfrac{7}{12} \)
\( \dfrac{13}{12} \)
\( \dfrac{12}{13} \)
n'existe pas
Résolvez l'équation \( \cos x = -{1\over 2} \).
\( S=\left\{\dfrac{2\pi}{3}\right\} \)
\( S=\left\{\dfrac{2\pi}{3},\, \dfrac{4\pi}{3}\right\} \)
\( S=\left\{\dfrac{2\pi}{3}+2k\pi,\, \dfrac{4\pi}{3}+2k\pi;\, k\in\mathbb{Z}\right\} \)
\( \sin (-a)= \)
\( \sin a \)
\( -\sin a \)
\(\cos a \)
Sans calculatrice, calculez \(tg\, \theta\) si \(\theta=315^{\circ}\) .
\( \dfrac{7\pi}{4} \)
\( -1 \)
\( 1 \)