Auto-Math
Si \(\sin\theta=\dfrac{3}{5} \) alors \(tg\, \theta=\)
\( \dfrac{4}{3} \)
\( \dfrac{3}{4} \)
\(\dfrac{2}{5} \)
n'existe pas
Sans calculatrice, calculez \(\cos\theta\) si \( \theta=\dfrac{5\pi}{6}\) .
\(150 \)
\( -\dfrac{1}{2} \)
\( \dfrac{\sqrt{3}}{2} \)
\( -\dfrac{\sqrt{3}}{2} \)
Résolvez l'équation \(\sin x = -1\) .
\(S=\left\{\dfrac{\pi}{2}\right\} \)
\( S=\left\{\dfrac{3\pi}{2}\right\} \)
\( S=\left\{\dfrac{3\pi}{2}+2k\pi;\, k\in\mathbb{Z}\right\} \)
\( S=\left\{\dfrac{\pi}{2}+2k\pi;\, k\in\mathbb{Z}\right\} \)
Convertissez en radians l'angle \(-160^\circ \).
\( -160\mbox{ radians}\)
\( \dfrac{8\pi}{9} \mbox{ radians}\)
\(\dfrac{10\pi}{9} \mbox{ radians}\)
\( -\dfrac{10\pi}{9}\mbox{ radians}\)
Donnez la valeur de \(tg\,\pi\).
0
1
180
Sans calculatrice, calculez \(\cos\theta\) si \(\theta=315^{\circ}\) .
\( \dfrac{\sqrt{2}}{2} \)
\( \dfrac{7\pi}{4} \)
\( \dfrac{1}{2} \)
\( -\dfrac{\sqrt{2}}{2} \)
Convertissez en degrés l'angle \(\pi \over 2\) .
\(45\mbox{ degrés}\)
\(90\mbox{ degrés}\)
\( 180 \mbox{ degrés}\)
\( \dfrac{1}{4}\mbox{ degrés}\)
Convertissez en radians l'angle \(240^\circ \).
\(\dfrac{\pi}{240}\mbox{ radians}\)
\( \dfrac{8\pi}{3}\mbox{ radians}\)
\( \dfrac{4\pi}{3}\mbox{ radians}\)
\( 240\mbox{ radians}\)
Si \(\alpha=53^{\circ}\) , alors le supplémentaire de \(\alpha\) vaut
\(37^{\circ} \)
\( 127^{\circ} \)
\( 233^{\circ} \)
\( 413^{\circ} \)
Convertissez en radians l'angle \(30^\circ \).
\(30\mbox{ radians}\)
\( \dfrac{\pi}{6} \mbox{ radians}\)
\( \dfrac{\pi}{3} \mbox{ radians}\)
\(\dfrac{\pi}{30}\mbox{ radians}\)