Auto-Math
Calculez \(\frac{1}{2}(2,3)-\frac{2}{5}(5,-1)\).
\((-1,4)\)
\((-1,-\frac{5}{3})\)
\((-1,\frac{19}{10})\)
\((-1,\frac{11}{10})\)
Soit A=(-1,5), B=(1,1) et C=(-4,2). Le point D tel que \( \overrightarrow{AB}=\overrightarrow{CD}\) est
\((-2,-2)\)
\((-6,6)\)
\((\frac{1}{4},\frac{5}{2})\)
\((2,-4)\)
L'intensité et la direction d'une force constante sont donnéespar \( \overrightarrow{a}= (2,5)\). Calculez le travail effectué si le point d'application de la force se déplace de l'origine au point P=(4,1).
\(14\)
\((6,6)\)
\(13\)
\(40\)
Soit A=(1,3) et B=(4,1). Déterminez C pour que OACB soit un parallélogramme.
\((3,-2)\)
\((-3,2)\)
\((5,4)\)
impossible
Déterminez \(m\) en sachant que le point \(P=(2,1,5)\) est à une distance 7 du milieu du segment joignant \(A=(1,2,3)\) à \(B=(-1,6,m)\).
\(m=19\)
\(m=2\sqrt{39}+13 \)
\(m=19 \mbox{ ou } m=-5\)
Soit A=(1,3) et B=(4,1). Déterminez C pour que OABC soit un parallélogramme.
Si \( \vec{a}=(-2,3,1)\) et \( \vec{b}=(7,4,5)\) alors \( \vec{a}\odot \vec{b}=\)
\(3\)
\(134\)
\(-840\)
\((-14,12,5)\)
L'expression \(||\vec{a}||\odot(\vec{b}+\vec{c})\) a-t-elle un sens ?
oui
non
je ne sais pas
Soit A=(4,4,4), B=(2,2,0) et M le milieu du segment reliant A et B. Donnez l'équation de la sphère centrée en M et passant par A et B.
\((x-3)^2+(y-3)^2+(z-2)^2=24\)
\((x-1)^2+(y-1)^2+(z-2)^2=6\)
\((x-3)^2+(y-3)^2+(z-2)^2=6\)
\((x-3)^2+(y-3)^2+(z-2)^2=\sqrt{6}\)
Soit \(A=(-4,\frac{1}{2})\), \(B=(3,-\frac{1}{3})\), \(C=(-\frac{1}{2},0)\) et \(D=(-3,-2)\). Calculez les coordonnées de \(E\) pour que \(\overrightarrow{OE}=\overrightarrow{AB}+\overrightarrow{CD}\).
\((\frac{9}{2},-\frac{17}{6})\)
\((1,-\frac{7}{6})\)
\((-\frac{21}{2},-\frac{1}{6})\)
\((-\frac{9}{2},\frac{17}{6})\)