Repères et vecteurs : Test de niveau 2

Soit \( P_1=(-1,2,3)\) et \(P_2=(2,-2,8)\). Déterminez les coordonnées de \( P_3\) tel que

\( \overrightarrow{P_1P_3}=3\, \overrightarrow{P_1P_2}\).

Soit A=(-1,5), B=(1,1) et C=(-4,2). Le point F tel que $ \overrightarrow{AB}=\overrightarrow{FC}$ est

Soit \(A=(1,2,3)\), \(B=(3,2,2)\) et \(C=(5,5,6)\). Le triangle ABC est rectangle en

Soient \( P_1 = (2,5,2)\)\( P_2 = (2,7,0)\) et \( P_3 = (0,7,0)\).

Calculez le produit vectoriel \(\vec{P_1 P_2} \times\vec{P_1 P_3}\).

L'expression \(||\vec{a}||\odot(\vec{b}+\vec{c})\) a-t-elle un sens ?

Le point P est soumis à une force \( \vec{F}\) d'intensité 8 Newton. La direction de cette force est

\( N65^\circ O\). Donnez la composante horizontale de \( \vec{F}\).

Soit A=(1,3), B=(-2,1) et C=(2,0). Le point E tel que \( \overrightarrow{CE}=\overrightarrow{CB}+\overrightarrow{CA}\) est

Donner l'équation du cercle de centre (1,2) et passant par le point (6,-1).

Sur un plan incliné dont la pente fait un angle de \( 30^{\circ}\) avec l'horizontale, on pousse vers le haut un petit wagonnet pesant 500 N. Calculez le travail effectué pour compenser la force de gravitation si l'on pousse le wagonnet sur une distance de 24 m.

Soit A=(1,3), B=(-2,1) et C=(2,0). Le point F tel que \( \overrightarrow{BF}=\overrightarrow{BA}+\overrightarrow{BC}\) est