Auto-Math
Déterminez \(\vec b=(\alpha,\beta,\gamma)\) pour que les
\(\vec b=(1,1,2)\)
\(\vec b=(1,\frac{1}{2},-\frac{1}{3})\)
\(\vec b=(\frac{7}{12},\frac{1}{6},\frac{3}{4})\)
impossible
Le point P est soumis à une force \( \vec{F}\) d'intensité 8 Newton. La direction de cette force est
\( N65^\circ O\). Donnez la composante horizontale de \( \vec{F}\).
\(-8\cos{25^{\circ}}\)
\(8\cos{25^{\circ}}\)
\(-8\cos{65^{\circ}}\)
\(8\sin{65^{\circ}}\)
Soit \(B=(3,-\frac{1}{3})\) et \(D=(-3,-2)\). Calculez les coordonnées de \(E\) pour que \( \overrightarrow{OE}=2\overrightarrow{BD}\).
\((-6,-\frac{5}{3})\)
\((-18,\frac{4}{3})\)
\((-12,-\frac{10}{3})\)
Soit A=(1,3) et B=(4,1). Déterminez C pour que OABC soit un parallélogramme.
\((5,4)\)
\((-3,2)\)
\((3,-2)\)
Soit A=(-1,5), B=(1,1) et C=(-4,2). Le point F tel que $ \overrightarrow{AB}=\overrightarrow{FC}$ est
\((-2,-2)\)
\((\frac{1}{4},\frac{5}{2})\)
\((-6,6)\)
\((2,-4)\)
Soit A=(-1,5), B=(1,1) et C=(-4,2). Le point E tel que \( \overrightarrow{AE}=\overrightarrow{CB}\) est
\((6,4)\)
\((4,4)\)
\((4,\frac{2}{5})\)
\((5,-1)\)
Soit A=(1,3) et B=(2,-6). Déterminez C pour que OACB soit un parallélogramme.
\((3,-3)\)
\((1,-9)\)
\((3,9)\)
Dans un repère orthonormé dont l'unité est le centimètre, calculer \(b\) pour que le point (3,b) soit à 5 cm de l'origine.
\(b=4 \mbox{ ou } b=-4\)
\(b=5\)
\(b=8\)
Soit A=(-4,3), B=(-1,-2) et C=(5,1). Déterminez D pour que ABCD soit un parallélogramme.
\((8,-4)\)
\((\frac{4}{5},-6)\)
\((2,6)\)
Soit A=(1,3), B=(-2,1) et C=(2,0). Le point D tel que \( \overrightarrow{AD}=\overrightarrow{AB}+\overrightarrow{AC}\) est
\((0,1)\)
\((5,2)\)
\((-2,-5)\)
\((-1,-2)\)