Auto-Math
Soit A=(1,3), B=(-2,1) et C=(2,0). Le point D tel que \( \overrightarrow{AD}=\overrightarrow{AB}+\overrightarrow{AC}\) est
\((0,1)\)
\((5,2)\)
\((-2,-5)\)
\((-1,-2)\)
Soit \(A=(-4,\frac{1}{2})\), \(B=(3,-\frac{1}{3})\), \(C=(-\frac{1}{2},0)\) et \(D=(-3,-2)\). Calculez les coordonnées de \(E\) pour que \(\overrightarrow{OE}=\overrightarrow{AB}+\overrightarrow{CD}\).
\((\frac{9}{2},-\frac{17}{6})\)
\((1,-\frac{7}{6})\)
\((-\frac{21}{2},-\frac{1}{6})\)
\((-\frac{9}{2},\frac{17}{6})\)
Dans un repère orthonormé dont l'unité est le centimètre, calculer \(b\) pour que le point (0,b) soit à \( \sqrt{5}\) cm du point (2,3).
\(b=5\)
\(b=4 \mbox{ ou } b=2\)
\(b=8\)
impossible
Soit A=(1,3), B=(-2,1) et C=(2,0). Le point E tel que \( \overrightarrow{CE}=\overrightarrow{CB}+\overrightarrow{CA}\) est
\((-3,4)\)
\((-1,0)\)
\((-5,4)\)
Calculez \(\frac{1}{2}(2,3)-\frac{2}{5}(5,-1)\).
\((-1,4)\)
\((-1,-\frac{5}{3})\)
\((-1,\frac{19}{10})\)
\((-1,\frac{11}{10})\)
Soit A=(1,3), B=(-2,1) et C=(2,0). Le point F tel que \( \overrightarrow{BF}=\overrightarrow{BA}+\overrightarrow{BC}\) est
\((-\frac{7}{2},1)\)
\((7,1)\)
Si \( \vec a=(1,-2,1)\), \(\vec b=(-1,2,1)\), \( \vec c=(2,0,-1)\) et \( \vec d=(0,1,1)\) alors \( (\vec a\times\vec b)\odot(\vec c\times\vec d)=\)
\(-8\)
\(0\)
\(-2\)
\(4\)
Soit \(A=(1,2,3)\), \(B=(3,2,2)\) et \(C=(5,5,6)\). Le triangle ABC est rectangle en
A
B
C
pas rectangle
Déterminez les valeurs de \(c\) pour que les vecteurs \( \vec{a}=(c,-2,3)\) et \(\vec{b}=(c,c,-5)\) soient orthogonaux.
\(c=0\)
\(c=-5\mbox{ ou }c=3\)
\(c=5\mbox{ ou }c=-3\)
Le point \(P\) est soumis à une force \( \vec{F}\) d'intensité 5 Newton. La direction de cette force est
\( N20^\circ E\). Donnez la composante horizontale de \( \vec{F}\).
\(5\sin{70^{\circ}}\)
\(-5\cos{70^{\circ}}\)
\(5\cos{70^{\circ}}\)
\(5\cos{20^{\circ}}\)