Auto-Math
Soit \( P_1=(-1,2,3)\) et \(P_2=(2,-2,8)\). Déterminez les coordonnées de \( P_3\) tel que
\( \overrightarrow{P_1P_3}=3\, \overrightarrow{P_1P_2}\).
\(P_3=(6,-2,8)\)
\(P_3=(8,-10,18)\)
\(P_3=(4,-10,18)\)
impossible
Soit A=(-1,5), B=(1,1) et C=(-4,2). Le point F tel que $ \overrightarrow{AB}=\overrightarrow{FC}$ est
\((-2,-2)\)
\((\frac{1}{4},\frac{5}{2})\)
\((-6,6)\)
\((2,-4)\)
Soit \(A=(1,2,3)\), \(B=(3,2,2)\) et \(C=(5,5,6)\). Le triangle ABC est rectangle en
A
B
C
pas rectangle
Soient \( P_1 = (2,5,2)\), \( P_2 = (2,7,0)\) et \( P_3 = (0,7,0)\).
Calculez le produit vectoriel \(\vec{P_1 P_2} \times\vec{P_1 P_3}\).
\((0,-4,4)\)
\((0,4,4)\)
\((0,0,140)\)
\(8\)
L'expression \(||\vec{a}||\odot(\vec{b}+\vec{c})\) a-t-elle un sens ?
oui
non
je ne sais pas
Le point P est soumis à une force \( \vec{F}\) d'intensité 8 Newton. La direction de cette force est
\( N65^\circ O\). Donnez la composante horizontale de \( \vec{F}\).
\(-8\cos{25^{\circ}}\)
\(8\cos{25^{\circ}}\)
\(-8\cos{65^{\circ}}\)
\(8\sin{65^{\circ}}\)
Soit A=(1,3), B=(-2,1) et C=(2,0). Le point E tel que \( \overrightarrow{CE}=\overrightarrow{CB}+\overrightarrow{CA}\) est
\((-3,4)\)
\((-1,0)\)
\((5,2)\)
\((-5,4)\)
Donner l'équation du cercle de centre (1,2) et passant par le point (6,-1).
\((x-1)^2+(y-2)^2=\sqrt{34}\)
\((x-1)^2+(y-2)^2=4\)
\((x-1)^2+(y-2)^2=2\)
\((x-1)^2+(y-2)^2=34\)
Sur un plan incliné dont la pente fait un angle de \( 30^{\circ}\) avec l'horizontale, on pousse vers le haut un petit wagonnet pesant 500 N. Calculez le travail effectué pour compenser la force de gravitation si l'on pousse le wagonnet sur une distance de 24 m.
\(6000\sqrt{3}\)
\(144\sqrt{3}\)
\((12\sqrt{3},-488)\)
\(6000\)
Soit A=(1,3), B=(-2,1) et C=(2,0). Le point F tel que \( \overrightarrow{BF}=\overrightarrow{BA}+\overrightarrow{BC}\) est
\((-\frac{7}{2},1)\)
\((-1,-2)\)
\((7,1)\)