Repères et vecteurs : Test de niveau 2

Soit A=(1,3), B=(-2,1) et C=(2,0). Le point D tel que \( \overrightarrow{AD}=\overrightarrow{AB}+\overrightarrow{AC}\) est

Soit \(A=(-4,\frac{1}{2})\), \(B=(3,-\frac{1}{3})\), \(C=(-\frac{1}{2},0)\) et \(D=(-3,-2)\). Calculez les coordonnées de \(E\) pour que \(\overrightarrow{OE}=\overrightarrow{AB}+\overrightarrow{CD}\).

Dans un repère orthonormé dont l'unité est le centimètre, calculer \(b\) pour que le point (0,b) soit à \( \sqrt{5}\) cm du point (2,3).

Soit A=(1,3), B=(-2,1) et C=(2,0). Le point E tel que \( \overrightarrow{CE}=\overrightarrow{CB}+\overrightarrow{CA}\) est

Calculez \(\frac{1}{2}(2,3)-\frac{2}{5}(5,-1)\).

Soit A=(1,3), B=(-2,1) et C=(2,0). Le point F tel que \( \overrightarrow{BF}=\overrightarrow{BA}+\overrightarrow{BC}\) est

Si \( \vec a=(1,-2,1)\), \(\vec b=(-1,2,1)\)\( \vec c=(2,0,-1)\) et \( \vec d=(0,1,1)\) alors \( (\vec a\times\vec b)\odot(\vec c\times\vec d)=\)

Soit \(A=(1,2,3)\), \(B=(3,2,2)\) et \(C=(5,5,6)\). Le triangle ABC est rectangle en

Déterminez les valeurs de \(c\) pour que les vecteurs \( \vec{a}=(c,-2,3)\) et \(\vec{b}=(c,c,-5)\) soient orthogonaux.

Le point \(P\) est soumis à une force \( \vec{F}\) d'intensité 5 Newton. La direction de cette force est

\( N20^\circ E\). Donnez la composante horizontale de \( \vec{F}\).