Auto-Math
Effectuez \((x-1)(x^2+1)-x^3+(x^2-1)(x+x^2+1)-(x^3-1)x\)
\(x^3+x^2-x+2\)
\(x^3-x^2-x-2\)
\(0\)
\(x^3-x^2+x-2\)
Effectuez \(3x-(2x^2+3)-[(2x+3x^2)-x+1]-(x-2)\)
\(-5x^2+x\)
\(-5x^2+x-2\)
\(x^2-x+2\)
\(-5x^2+x-5\)
Factorisez \(x^3-5x^2+5x-1=\)
\((x-1)^5\)
\((x-1)(x^2-6x+1)\)
\((x-1)(x^2-4x+1)\)
\((x-1)^3\)
Factorisez \(x^7-3x^5+3x^3-x\)
\(x(x-1)^3(x+1)^3\)
\(x(x^2-1)(x^4-3x^2-1)\)
\(x(x^2-1)(x^4-3x^3+x^2+1)\)
\(x^6-3x^4+3x^2-1\)
Quel polynôme faut-il ajouter à \(x+5\) pour obtenir \(4x-1\) ?
\(3x+4\)
\(4x-6\)
\(3x-6\)
\(4-6\)
Factorisez \(3(2-x)^2-3(x-2)^3\)
\(3(2-x)^2(7-3x)\)
\(3-x\)
\(3(2-x)^2(3-x)\)
\(-1-x\)
Si P est un polynôme de degré 5 et Q un polyôme de degré 3 alors P*Q est un polynôme de degré
\(5\)
\(8\)
\(15\)
\(2\)
Factorisez \(x^5+4-4x^3-x^2\)
\((x^3-1)(x^2+4)\)
\((x-1)(x^2+x+1)(x-2)(x+2)\)
impossible
Effectuez \((3a^2b^3c^2-4a^3c^4)^2\)
\(9a^4b^6c^4-16a^6c^8\)
\(9a^4b^9c^4+16a^9c^{16}-24a^5b^3c^6\)
\(9a^4b^6c^4+16a^6c^8-24a^5b^3c^6\)
\(9a^4b^6c^4+16a^6c^8-24a^6b^3c^8\)
Effectuez \((x^4+\frac{a}{4})^2\)
\(x^8+\frac{a^2}{16}\)
\(x^8+\frac{a^2}{16}+\frac{1}{4}ax^4\)
\(x^{16}+\frac{a^2}{4}+\frac{1}{2}ax^4\)
\(x^8+\frac{a^2}{16}+\frac{1}{2}ax^4\)