Auto-Math
Effectuez \((x^2+2x+9)-(x^2-4)+(x^2-x)\)
\(3x^2+x+13\)
\(x^2+x+13\)
\(x^2+x+5\)
\(x^2+x+12\)
\(4x^2-9y^2=\)
\((4x-9y)(4x+9y)\)
\((2x-3y)(2x+3y)\)
\((2x-3y)^2\)
\(-5x^2y^2\)
Le polynôme \(x^2-6x+5\) est divisible par
\(x+3\)
\(x-3\)
\(x+1\)
\(x-5\)
\((x^2-1)(x^2+1)=\)
\(x^4-2x^2+1\)
\(x^4+1\)
\(x^4-1\)
\(2x^2-1\)
Factorisez \( (x+y)(3a+2)-(x+y)\)
\((x+y)(3a+1)\)
\((x+y)^2(3a+2)\)
\(3a+2\)
\(3ax+x+3ay+y\)
Factorisez \(2a(x-y)-3b(x-y)\)
\((x-y)^2(2a-3b)\)
\(2ax-2ay-3bx+3by\)
\((x^2-y^2)(2a+3b)\)
\((x-y)(2a-3b)\)
Le reste de la division de \(x^3+9x^2+11x-21\) par \( x-1\) vaut
\(0\)
\(-24\)
\(1\)
\(x^2+10x+21\)
L'évaluation du polynôme \(P(x)= -3x^2+x-4\) en \(x=-2\) vaut
\(6\)
\(-18\)
\(-2\)
\(-16\)
Déterminez \(a\), \(b\) et \(c\) pour que les deux polynômes soient égaux, \(P(x)=(a+1)x^2-bx+c\) et \(Q(x)=2ax^2+x+2b\).
\(a=1,b=1,c=2\)
\(a=1,b=-1,c=-2\)
\(a=\frac{1}{2},b=1,c=2\)
\(a=1,b=0,c=0\)
Quel polynôme faut-il ajouter à \( x+5\) pour obtenir \( 3x+7\) ?
\(3x+2\)
\(3+2\)
\(x^2+2\)
\(2x+2\)