Auto-Math
Le quotient du polynôme \(x^3-x^2+x-6\) par \(x-2\) vaut
\(x^3-3x^2+x-20\)
\(x^2+x+3\)
\(x^3+x^2+3x\)
\(0\)
Effectuez \((2x^3+x^2+3)(2x^2-x+1)\)
\(2x^3+2x^2-x+3\)
\(4x^5-x^3+3\)
\(4x^5+x^3+7x^2-3x+3\)
\(4x^6+x^3+7x^2-3x+3\)
L'évaluation du polynôme \(P(x)= x^3+5x^2-4x+2\) en \(x=2\) vaut
\(24\)
\(2\)
\(22\)
Factorisez \(x^3+2x^2-1\)
\((x-1)(x^2+x-1)\)
\(x^2(x+2)-1\)
\((x+1)(x^2+x-1)\)
\((x+1)(x^4+1)\)
Déterminez \(p\) pour que la division de \( x^3+px-1\) par \( x+1\) soit exacte.
\(p=0\)
\(p=2\)
\(p=-1\)
\(p=-2\)
\((\sqrt{3}-\sqrt{2})^2=\)
\(5-2\sqrt{5}\)
\(1\)
\(5-\sqrt{6}\)
\(5-2\sqrt{6}\)
Factorisez \(x^5-8x^3+16x\)
\(x(x^2+4)^2\)
\(x(x^4+16)^2\)
\(x(x+4)^2\)
\(x(x^2-4)^2\)
\(8a^3-b^6=\)
\((2a-b^ 2)(4a^2+2ab^2+b^4)\)
\((2a-b^2)(4a^2+4ab^2+b^4)\)
\((2a-b^2)^3\)
\((2a-b^3)(4a^2+2ab^3+b^6)\)
Effectuez \(-(1+x^3+x^2)(x-1)\)
\(x^4-x^2-x+1\)
\(x^4+2x^3+x^2+x+1\)
\(1-x+x^2+x^3\)
\(-x^4+x^2-x+1\)
Quel polynôme faut-il ajouter à \( x+5\) pour obtenir \( 3x+7\) ?
\(3x+2\)
\(3+2\)
\(x^2+2\)
\(2x+2\)