Auto-Math
Le quotient du polynôme \(x^3-x^2+x-6\) par \(x-2\) vaut
\(x^3-3x^2+x-20\)
\(x^2+x+3\)
\(x^3+x^2+3x\)
\(0\)
Effectuez \((2x^3+x^2+3)(2x^2-x+1)\)
\(2x^3+2x^2-x+3\)
\(4x^5-x^3+3\)
\(4x^5+x^3+7x^2-3x+3\)
\(4x^6+x^3+7x^2-3x+3\)
\((2x+1)^3=\)
\(4x^2+4x+1\)
\(8x^3+1\)
\(8x^3+12x^2+6x+1\)
\(8x^3+6x^2+6x+1\)
Effectuez \((-x+2)^3\)
\(8-x^3\)
\(8-6x+6x^2-x^3\)
\(8-12x+6x^2-x^3\)
\(x^3-6x^2+12x-8\)
Le reste de la division de \( 3x^3-8x^2-5\) par \(x-4\) est
0
4
59
\(3x^2+4x+16\)
\((\sqrt{3}-\sqrt{2})^2=\)
\(5-2\sqrt{5}\)
\(1\)
\(5-\sqrt{6}\)
\(5-2\sqrt{6}\)
\((\sqrt{2}-1)^3=\)
\(5\sqrt{2}-7\)
\(2\sqrt{2}-1\)
\(6\sqrt{2}-7\)
\(7-5\sqrt{2}\)
\((\sqrt{2}+1)(\sqrt{2}-1)=\)
\(\sqrt{2}-1\)
\(2-2\sqrt{2}-1\)
Factorisez \(x^4-y^6\)
\((x^2-y^3)^2\)
\((x^{\frac{4}{3}}-y^2)^3\)
\((x^2-y^3)(x^2+y^3)\)
Factorisez \(x^5-8x^3+16x\)
\(x(x^2+4)^2\)
\(x(x^4+16)^2\)
\(x(x+4)^2\)
\(x(x^2-4)^2\)