Auto-Math
Effectuez \((-4x^2+2y^3)^2\)
\(16x^4+4y^5-16x^2y^3\)
\(16x^4+4y^6-16x^2y^3\)
\(4y^6-16x^4\)
\(4x^4+2y^6-8x^2y^3\)
Factorisez \(x^3+x^2+x+1\)
\(x^2(x+1)\)
\((x+1)(x^2+1)\)
\(x(x^2+x+1)+1\)
\((x+1)(x+1)(x-1)\)
Factorisez \(2x^3-x^2-18x+9=\)
\((2x-3)^3\)
\((2x-1)(x^2+9)\)
\((x-9)(x+9)(6x+1)\)
\((2x-1)(x-3)(x+3)\)
Factorisez \(x^3+4x^2+5x+6\)
\((x+3)(x^2+x+2)\)
\((x-3)(x^2+x+2)\)
\((x^3+4x^2)(5x+6)\)
\(x(x^2+4x+5)+6\)
Effectuez \((x^4+\frac{a}{4})^2\)
\(x^8+\frac{a^2}{16}\)
\(x^8+\frac{a^2}{16}+\frac{1}{4}ax^4\)
\(x^{16}+\frac{a^2}{4}+\frac{1}{2}ax^4\)
\(x^8+\frac{a^2}{16}+\frac{1}{2}ax^4\)
Le reste de la division de \(x^4-3x+3x^3-1\) par \(x^2-1\) est
\(-1\)
\(1\)
\(0\)
\(x^2+3x+1\)
Effectuez \((x+\frac{1}{x})^3\)
\(\dfrac{x^9+3x^4+3x^2+1}{x^3}\)
\(\dfrac{x^6+3x^4+3x^2+1}{x^3}\)
\(\dfrac{x^6+3x^5+3x+1}{x^3}\)
\(\dfrac{x^6+1}{x^3}\)
Le reste de la division de \( x-x^3-1-2x^2\) par \(4+2x\) vaut
\(-\frac{1}{2}x^2+\frac{1}{2}\)
\(-2\)
\(-3\)
Factorisez \(x^3-5x^2+5x-1=\)
\((x-1)^5\)
\((x-1)(x^2-6x+1)\)
\((x-1)(x^2-4x+1)\)
\((x-1)^3\)
\((a^2-b)^3=\)
\(a^6-b^3\)
\((a^2-b)(a^4+a^2b+b^2)\)
\(a^5-3a^4b+3a^2b^2-b^3\)
\(a^6 -3a^4b+3a^2b^2-b^3\)