Auto-Math
Factorisez \(x^3-5x^2+5x-1=\)
\((x-1)^5\)
\((x-1)(x^2-6x+1)\)
\((x-1)(x^2-4x+1)\)
\((x-1)^3\)
L'évaluation du polynôme \(P(x)= -3x^2+x-4\) en \(x=\frac{1}{2}\) vaut
\(-5\)
\(-\frac{17}{4}\)
\(-\frac{5}{2}\)
\(-\frac{9}{2}\)
Factorisez \((a+b)^3-(a+b)\)
\((a+b)(a^2+2ab+b^2)\)
\((a+b)^2\)
\((a+b)(a^2+2ab+b^2-1)\)
\(a^3+b^3-a-b\)
\((x^2-1)^3=\)
\(x^6-1\)
\(-x^6+3x^4-3x^2+1\)
\(x^6-3x^4+3x^2-1\)
\(x^5-3x^4+3x^2-1\)
Effectuez \((x-1)(x^2+1)-x^3+(x^2-1)(x+x^2+1)-(x^3-1)x\)
\(x^3+x^2-x+2\)
\(x^3-x^2-x-2\)
\(0\)
\(x^3-x^2+x-2\)
Si P est un polynôme de degré 5 et Q un polynôme de degré 3 alors P+Q est un polynôme de degré
\(5\)
\(3\)
\(2\)
\(8\)
\((3a+2b)^2=\)
\(9a^2+12ab+4b^2\)
\(9a^2+4b^2\)
\(9a^2+4b^2+6ab\)
\(3a^2+2b^2+12ab\)
Effectuez \((2x^4-3)^3\)
\(8x^{12}-36x^8+54x^4-27\)
\(8x^{12}-27\)
\(8x^7-36x^6+54x^4-27\)
\(8x^{12}+36x^8+54x^4+27\)
Quel polynôme faut-il ajouter à \(x+5\) pour obtenir \(42x^2\) ?
\(42x^2\)
impossible
\(37x\)
\(42x^2-x-5\)
Factorisez \(a^3-b^3-a^2+b^2\)
\((a-b)(a^2+ab+b^2-a+b)\)
\((a-b)(a^2+ab+b^2-a-b)\)
\((a^2-b^2)(a-b-1)\)
\(a-b\)