Auto-Math
\((\sqrt{3}-\sqrt{2})^2=\)
\(5-2\sqrt{5}\)
\(1\)
\(5-\sqrt{6}\)
\(5-2\sqrt{6}\)
Effectuez \((2x-3)^2\)
\(4x^2+9-12x\)
\(4x^2+9-6x\)
\(2x^2+9-12x\)
\(4x^2-9\)
Quel polynôme faut-il ajouter à \( x+5\) pour obtenir \( 3x+7\) ?
\(3x+2\)
\(3+2\)
\(x^2+2\)
\(2x+2\)
\((\sqrt{2}+1)(\sqrt{2}-1)=\)
\(\sqrt{2}-1\)
\(2\sqrt{2}-1\)
\(2-2\sqrt{2}-1\)
Déterminez \( p\) pour que la division de \(x^2-2x+p\) par \( x-1\) soit exacte.
\(p=-3\)
\(p=-1\)
\(p=1\)
\(p=2x-x^2\)
\(4x^2-9y^2=\)
\((4x-9y)(4x+9y)\)
\((2x-3y)(2x+3y)\)
\((2x-3y)^2\)
\(-5x^2y^2\)
\(x^3+8=\)
\((x+2)(x^2+2x+4)\)
\((x+2)^3\)
\((x-2)(x^2-2x+4)\)
\((x+2)(x^2-2x+4)\)
Effectuez \((-x+2)^3\)
\(8-x^3\)
\(8-6x+6x^2-x^3\)
\(8-12x+6x^2-x^3\)
\(x^3-6x^2+12x-8\)
Déterminez \(p\) pour que la division de \( x^3+px-1\) par \( x+1\) soit exacte.
\(p=0\)
\(p=2\)
\(p=-2\)
L'évaluation du polynôme \(P(x)= -3x^2+x-4\) en \(x=0\) vaut
\(0\)
\(-3x^ 2+x\)
\(-4\)
\(4\)