Auto-Math
Pour quelles valeurs de vérité de P et Q la proposition "\(\neg P\Rightarrow(P\wedge Q)\)" est-elle vraie ?
toujours vraie
P fausse et Q vraie
P vraie
P fausse et Q fausse
Soit A et B deux ensembles non vides. L'implication "\(A\subseteq B\Rightarrow\forall x\in A,\forall y\in B\, :\, x=y\)" est-elle vraie ou fausse ?
Vrai
Faux
Je ne sais pas
La traduction mathématique de la proposition "Il y a des entiers qui ne sont pas naturels" est
\(\exists\, x\in\mathbb{N}\, :\, x\not\in\mathbb{Z}\)
\(\mathbb{N}\setminus\mathbb{Z}\neq\emptyset\)
\(\mathbb{N}\cap\mathbb{Z}=\emptyset\)
\(\mathbb{Z}\setminus\mathbb{N}\neq\emptyset\)
La traduction mathématique de la proposition "Tous les éléments de l'ensemble A sont des réels positifs'' est
\(\forall x\in\mathbb{R}^+\,:\, x\in A\)
\(A\subset\mathbb{R}^+\)
\(\mathbb{R}^+\subset A\)
\(A\in\mathbb{R}^+\)
La contraposée de "Si f est dérivable alors f est continue'' est
f est continue si et seulement si f est dérivable
Si f est dérivable alors f n'est pas continue
Si f est continue alors f est dérivable
Si f n'est pas continue alors f n'est pas dérivable
Soit \(B=\{1,2,3\}\). La proposition suivante est-elle vraie ou fausse : "\(\exists\, x\in B,\, \forall y\in B\, :\, x^ 2<y+1\)" ?
La proposition "\(((P\vee Q)\wedge R)\Leftrightarrow(P\vee(Q\wedge R))\)" est une tautologie.
La traduction en français de la proposition "\(\exists\, x\in \mathbb{Q},\forall y\in \mathbb{Q}\, :\, x\neq y^2\)" est
Aucun rationnel n'a de racine carrée rationnelle
Il existe un rationnel qui n'a pas de racine carrée rationnelle
Il y a un rationnel qui n'est pas une racine carrée
Il y a un rationnel qui n'a pas de carré
La négation de la proposition "Aucun élève de la classe n'est absent'' est
Tous les élèves de la classe sont présents
Tous les élèves de la classe sont absents
Il y a des élèves de la classe qui sont absents
Aucun élève de la classe n'est présent
Soit \(B=\{1,2,3\}\). La proposition suivante est-elle vraie ou fausse : "\(\exists\, x\in B,\, \exists\, y\in B,\, \forall z\in B\, :\, x^ 2+y^2<2z^ 2\)"?