Auto-Math
La contraposée de "Si f est dérivable alors f est continue'' est
f est continue si et seulement si f est dérivable
Si f est dérivable alors f n'est pas continue
Si f est continue alors f est dérivable
Si f n'est pas continue alors f n'est pas dérivable
La négation de la proposition "Les trois nombres réels a, b et c sont négatifs'' est
Il y a au moins un des trois nombres réels a, b ou c qui est positif
Les trois nombres réels a, b et c sont positifs
Aucun des trois nombres réels a, b et c n'est négatif
Il y a au moins un des trois nombres réels a, b ou c qui est nul
La proposition "\(((P\wedge Q)\vee R)\Leftrightarrow(P\wedge(Q\vee R))\)" est une tautologie.
Vrai
Faux
Je ne sais pas
Soit A et B deux ensembles non vides. L'implication "\(A\subseteq B\Rightarrow\forall x\in A,\forall y\in B\, :\, x=y\)" est-elle vraie ou fausse ?
La traduction mathématique de la proposition "Tous les éléments de l'ensemble A sont des réels positifs'' est
\(\forall x\in\mathbb{R}^+\,:\, x\in A\)
\(A\subset\mathbb{R}^+\)
\(\mathbb{R}^+\subset A\)
\(A\in\mathbb{R}^+\)
La négation de la proposition "Les ensembles \(A\) et \(B\) ont au moins un élément en commun" est
\(\exists\, x\, :\, x\in (A\cap B)\)
\(A\cap B=\{x\}\)
\(A\cup B=\emptyset\)
\(A\cap B=\emptyset\)
La négation de la proposition "\( \forall x\in\mathbb{N},\, \forall y\in\mathbb{N}\, :\, x+y>0\)" est
\(\exists\, x\in\mathbb{N},\, \exists\, y\in\mathbb{N}\, :\, x+y<0\)
\(\exists\, x\in\mathbb{N},\, \exists\, y\in\mathbb{N}\, :\, x+y\leq 0\)
\(\forall x\in\mathbb{N},\, \forall y\in\mathbb{N}\, :\, x+y<0\)
\(\exists\, x\not\in\mathbb{N},\, \exists\, y\not\in\mathbb{N}\, :\, x+y\leq 0\)
Pour quelles valeurs de vérité de P et Q la proposition "\((P\wedge Q)\Rightarrow P\)" est-elle fausse ?
P vraie et Q fausse
P fausse et Q vraie
toujours fausse
jamais fausse
La traduction mathématique de la proposition "Il y a des entiers qui ne sont pas naturels" est
\(\exists\, x\in\mathbb{N}\, :\, x\not\in\mathbb{Z}\)
\(\mathbb{N}\setminus\mathbb{Z}\neq\emptyset\)
\(\mathbb{N}\cap\mathbb{Z}=\emptyset\)
\(\mathbb{Z}\setminus\mathbb{N}\neq\emptyset\)
La proposition "\((P\vee(Q\Rightarrow Q))\Rightarrow Q\)" est une tautologie.