Auto-Math
Ecrivez la phrase suivante sous forme de proposition composée et déterminez si elle est vraie ou fausse. Précisez les propositions simples \(P\) et \(Q\) que vous utilisez. "6 < 2 est une condition suffisante pour que 1 = 2.''
Vrai
Faux
Je ne sais pas
La négation de la proposition "Tous les éléments de l'ensemble A sont des réels positifs" est
\(\exists\, x\in A\, :\, x<0\)
\(\exists\, x\in A\, :\, x=0\)
\(\forall x\in A\, :\, x<0\)
\(\exists\, x\not\in A\, :\, x\in\mathbb{R}^-\)
"\(P\Leftrightarrow Q\)" n'est pas équivalente à
\(Q\Leftrightarrow P\)
\(\neg P\Leftrightarrow\neg Q\)
\((P\Rightarrow Q)\wedge (Q\Rightarrow P)\)
\((P\Rightarrow Q)\vee(Q\Rightarrow P)\)
Ecrivez la phrase suivante sous forme de proposition composée et déterminez si elle est vraie ou fausse. Précisez les propositions simples \(P\) et \(Q\) que vous utilisez. "Il faut que 2+2=9 pour que 5 = 5."
La réciproque de "\(x\in\mathbb{N}\Rightarrow x\geq 0\)" est
\(x\geq 0\Rightarrow x\in\mathbb{N}\)
\(x\not\in\mathbb{N}\Rightarrow x<0\)
\(x<0\Rightarrow x\in\mathbb{N}\)
\(x<0\Rightarrow x\not\in\mathbb{N}\)
Pour quelles valeurs de vérité de P et Q la proposition "\((P\wedge Q)\Rightarrow P\)" est-elle fausse ?
P vraie et Q fausse
P fausse et Q vraie
toujours fausse
jamais fausse
La contraposée de "\(x\in\mathbb{N}\Rightarrow x\geq 0\)" est
\(x\in\mathbb{N}\Leftrightarrow x\geq 0\)
La négation de la proposition "\( \forall x\in\mathbb{N},\, \forall y\in\mathbb{N}\, :\, x+y>0\)" est
\(\exists\, x\in\mathbb{N},\, \exists\, y\in\mathbb{N}\, :\, x+y<0\)
\(\exists\, x\in\mathbb{N},\, \exists\, y\in\mathbb{N}\, :\, x+y\leq 0\)
\(\forall x\in\mathbb{N},\, \forall y\in\mathbb{N}\, :\, x+y<0\)
\(\exists\, x\not\in\mathbb{N},\, \exists\, y\not\in\mathbb{N}\, :\, x+y\leq 0\)
Soit \(B=\{1,2,3\}\). La proposition suivante est-elle vraie ou fausse : "\(\exists\, x\in B,\, \exists\, y\in B,\, \forall z\in B\, :\, x^ 2+y^2<2z^ 2\)"?
Pour quelles valeurs de vérité de P et Q la proposition "\((P\wedge Q)\Rightarrow (P\vee Q)\)" est-elle fausse ?