Auto-Math
Ajoutez un connecteur pour que la proposition "Ces deux droites sont sécantes ..... parallèles'' soit vraie.
si et seulement si
implique
et
ou
Soit \(A=\{2,3,4,5,6,7,8,9\}\) et \(B=\{1,2,3\}\). La proposition suivante est-elle vraie ou fausse : \("\forall x\in A\, :\, x+5<12"\)?
Vrai
Faux
Je ne sais pas
La proposition "\(\neg (P\wedge Q)\Leftrightarrow(\neg P\vee\neg Q)\)'' est une tautologie.
La proposition "Tout carré est un rectangle'' est-elle vraie ou fausse ?
La négation de la proposition "\(\forall x\in\mathbb{N}\, :\, x>1\)" est
\(\exists\, x\not\in\mathbb{N}\, :\, x\leq 1\)
\(\exists\, x\in\mathbb{N}\, :\, x\leq 1\)
\(\forall x\in\mathbb{N}\, :\, x\leq 1\)
\(\exists\, x\in\mathbb{N}\, :\, x< 1\)
La réciproque de "\(x\in\mathbb{N}\Rightarrow x\in\mathbb{R}\)" est
\(\normalsize x\in\mathbb{N}\Rightarrow x\not\in\mathbb{R}\)
\(\normalsize x\not\in\mathbb{R}\Rightarrow x\not\in\mathbb{N}\)
\(x\not\in\mathbb{N}\Rightarrow x\not\in\mathbb{R}\)
\(x\in\mathbb{R}\Rightarrow x\in\mathbb{N}\)
"\( P \Rightarrow Q\)" est équivalente à
\(\neg P \Rightarrow\neg Q\)
\(Q\Rightarrow P\)
\(\neg Q\Rightarrow\neg P\)
\(Q \Rightarrow\neg P\)
La traduction mathématique de la proposition "Tout nombre réel est majoré par un entier" est
\(\forall x\in\mathbb{R},\, \exists\, n\in\mathbb{Z}\, :\, n\geq x\)
\(\forall x\in\mathbb{R},\, \forall n\in\mathbb{Z}\, :\, n\geq x\)
\(\forall x\in\mathbb{R},\, \exists\, n\in\mathbb{Z}\, :\, x\geq n\)
\(\exists\, n\in\mathbb{Z},\,\forall x\in\mathbb{R}\, :\, n\geq x\)
La négation de la proposition "\(x\in\mathbb{Z}\)" est
\(x\subset\mathbb{Z}\)
\(x\in\mathbb{N}\)
\(x\not\in\mathbb{Z}\)
\(x\in\mathbb{R}\)
Soit \(A=\{2,3,4,5,6,7,8,9\}\) et \(B=\{1,2,3\}\). La proposition suivante est-elle vraie ou fausse : \("\forall x\in A\, :\, x^ 2>1"\)?