Auto-Math
Effectuez \((2x-1)^3\)
\(8x^3-1\)
\(8x^3-6x^2+6x-1\)
\(1-6x+12x^2-8x^3\)
\(8x^3-12x^2+6x-1\)
Effectuez \((2x-3)^2\)
\(4x^2+9-12x\)
\(4x^2+9-6x\)
\(2x^2+9-12x\)
\(4x^2-9\)
Le polynôme \( 4x^2+2x-12\) est divisible par
\(x-2\)
\(2+x\)
\(x-1\)
\(3+x\)
\(8a^3-b^6=\)
\((2a-b^ 2)(4a^2+2ab^2+b^4)\)
\((2a-b^2)(4a^2+4ab^2+b^4)\)
\((2a-b^2)^3\)
\((2a-b^3)(4a^2+2ab^3+b^6)\)
Le reste de la division de \(x^4-5x^2-x\) par \( x+1\) vaut
\(x^3-x^2-4x+3\)
\(-3\)
\(-5\)
\(-1\)
L'évaluation du polynôme \(P(x)= x^3+5x^2-4x+2\) en \(x=2\) vaut
\(0\)
\(24\)
\(2\)
\(22\)
\((x^2-1)(x^2+1)=\)
\(x^4-2x^2+1\)
\(x^4+1\)
\(x^4-1\)
\(2x^2-1\)
Effectuez \((x^2+2x+9)-(x^2-4)+(x^2-x)\)
\(3x^2+x+13\)
\(x^2+x+13\)
\(x^2+x+5\)
\(x^2+x+12\)
Effectuez \((-x+2)^3\)
\(8-x^3\)
\(8-6x+6x^2-x^3\)
\(8-12x+6x^2-x^3\)
\(x^3-6x^2+12x-8\)
\(x^3+8=\)
\((x+2)(x^2+2x+4)\)
\((x+2)^3\)
\((x-2)(x^2-2x+4)\)
\((x+2)(x^2-2x+4)\)