Auto-Math
Effectuez \((2x-3)^2\)
\(4x^2+9-12x\)
\(4x^2+9-6x\)
\(2x^2+9-12x\)
\(4x^2-9\)
Factorisez \((a+1)^2+2(a+1)\)
\(a+3\)
\((a+1)(a+3)\)
\(a^2+4a+3\)
\((a+1)(3a+3)\)
Le reste de la division de \(3x^2-5x+3\) par \(x+2\) vaut
\(-2\)
\(3x-11\)
\(5\)
\(25\)
Factorisez \(x^8-x\).
\(x(x^7-1)\)
\(x^7-1\)
\(x(x-1)^7\)
\(x(x^3-1)(x^4-1)\)
Déterminez \(a\), \(b\) et \(c\) pour que les deux polynômes soient égaux, \( P(x)=(a-2)x^3-3x^2-5(3-b)x+c\) et \(Q(x)=2x^3-3x^2+5x-12\).
\(a=4,b=4,c=-12\)
\(a=4, b=-4, c=-12\)
\(a=0,b=2,c=12\)
\(a=2,b=5,c=-12\)
Déterminez \(p\) pour que la division de \( x^3-x+p\) par \( x-2\) soit exacte.
\(p=-6\)
\(p=6\)
\(p=2\)
\(p=0\)
Factorisez \(2a(x-y)-3b(x-y)\)
\((x-y)^2(2a-3b)\)
\(2ax-2ay-3bx+3by\)
\((x^2-y^2)(2a+3b)\)
\((x-y)(2a-3b)\)
Effectuez \((2x^3+x^2+3)(2x^2-x+1)\)
\(2x^3+2x^2-x+3\)
\(4x^5-x^3+3\)
\(4x^5+x^3+7x^2-3x+3\)
\(4x^6+x^3+7x^2-3x+3\)
\((\sqrt{3}-\sqrt{2})^2=\)
\(5-2\sqrt{5}\)
\(1\)
\(5-\sqrt{6}\)
\(5-2\sqrt{6}\)
Effectuez \((xy-1)^2\)
\(x^2y^2-1-2xy\)
\(x^2y^2+1-2xy\)
\(x^2y^2+1-xy\)
\(x^2y^2-1\)