Auto-Math
La proposition "\(((P\wedge Q)\vee R)\Leftrightarrow(P\wedge(Q\vee R))\)" est une tautologie.
Vrai
Faux
Je ne sais pas
Pour quelles valeurs de vérité de P et Q la proposition "\(\neg P\Rightarrow(P\wedge Q)\)" est-elle vraie ?
toujours vraie
P fausse et Q vraie
P vraie
P fausse et Q fausse
La proposition "\(((P\vee Q)\wedge R)\Leftrightarrow(P\vee(Q\wedge R))\)" est une tautologie.
La proposition "\((P\vee(Q\Rightarrow Q))\Rightarrow Q\)" est une tautologie.
La traduction mathématique de la proposition "Il y a des entiers qui ne sont pas naturels" est
\(\exists\, x\in\mathbb{N}\, :\, x\not\in\mathbb{Z}\)
\(\mathbb{N}\setminus\mathbb{Z}\neq\emptyset\)
\(\mathbb{N}\cap\mathbb{Z}=\emptyset\)
\(\mathbb{Z}\setminus\mathbb{N}\neq\emptyset\)
Pour quelles valeurs de vérité de P et Q la proposition "\((P\wedge Q)\Rightarrow (P\vee Q)\)" est-elle fausse ?
P vraie et Q fausse
toujours fausse
jamais fausse
La négation de la proposition "Les ensembles \(A\) et \(B\) ont au moins un élément en commun" est
\(\exists\, x\, :\, x\in (A\cap B)\)
\(A\cap B=\{x\}\)
\(A\cup B=\emptyset\)
\(A\cap B=\emptyset\)
La proposition "\(((P\Rightarrow Q)\wedge (Q\Rightarrow R))\Rightarrow (P\Rightarrow R)\)" est une tautologie.
Soit A et B deux ensembles non vides. L'implication "\(A\subseteq B\Rightarrow\forall x\in A,\forall y\in B\, :\, x=y\)" est-elle vraie ou fausse ?
La négation de la proposition "Tous les éléments de l'ensemble A sont des réels positifs" est
\(\exists\, x\in A\, :\, x<0\)
\(\exists\, x\in A\, :\, x=0\)
\(\forall x\in A\, :\, x<0\)
\(\exists\, x\not\in A\, :\, x\in\mathbb{R}^-\)