Auto-Math
Soit A et B deux ensembles non vides. L'implication "\(A\subseteq B\Rightarrow\forall x\in B\, :\, x\in A\)" est-elle vraie ou fausse ?
Vrai
Faux
Je ne sais pas
Soit A et B deux ensembles non vides. L'implication "\(A\subseteq B\Rightarrow\exists\, x\in A\, :\, x\in B\)" est-elle vraie ou fausse ?
Soit A et B deux ensembles non vides. L'implication "\(A\subseteq B\Rightarrow\forall x\in A\, :\, x\in B\)" est-elle vraie ou fausse ?
La proposition "\((P\vee(Q\Rightarrow Q))\Rightarrow Q\)" est une tautologie.
Pour quelles valeurs de vérité de P et Q la proposition "\((P\wedge Q)\Rightarrow P\)" est-elle fausse ?
P vraie et Q fausse
P fausse et Q vraie
toujours fausse
jamais fausse
La négation de la proposition "\(\forall x\in\mathbb{R},\exists\, y\in\mathbb{R}\, :\, x+y=0\)" est
\(x\not\in\mathbb{R},\forall y\not\in\mathbb{R}\, :\, x+y\neq 0\)
\(\exists\, y\in\mathbb{R},\forall x\in\mathbb{R}\, :\, x+y\neq 0\)
\(\exists\, x\in\mathbb{R},\forall y\in\mathbb{R}\, :\, x+y\neq 0\)
\(\exists\, x\in\mathbb{R},\forall y\in\mathbb{R}\, :\, x+y=0\)
Soit \(B=\{1,2,3\}\). La proposition suivante est-elle vraie ou fausse : "\(\forall x\in B,\, \exists\, y\in B\, :\, x^ 2+y^2<12\)" ?
L'implication "\(P\Rightarrow Q\)" signifie
P est suffisante pour Q
P est nécessaire pour Q
Q est suffisante pour P
P et Q sont équivalentes
La traduction en français de la proposition "\(\exists\, x\in \mathbb{Q},\forall y\in \mathbb{Q}\, :\, x\neq y^2\)" est
Aucun rationnel n'a de racine carrée rationnelle
Il existe un rationnel qui n'a pas de racine carrée rationnelle
Il y a un rationnel qui n'est pas une racine carrée
Il y a un rationnel qui n'a pas de carré
La réciproque de "\(x\in\mathbb{N}\Rightarrow x\geq 0\)" est
\(x\geq 0\Rightarrow x\in\mathbb{N}\)
\(x\not\in\mathbb{N}\Rightarrow x<0\)
\(x<0\Rightarrow x\in\mathbb{N}\)
\(x<0\Rightarrow x\not\in\mathbb{N}\)