Logique : Test de niveau 1

Ecrivez la phrase suivante sous forme de proposition composée et déterminez si elle est vraie ou fausse. Précisez les propositions simples P et Q que vous utilisez. "2 + 2 = 4 et janvier est un mois.''

Soit \(A=\{2,3,4,5,6,7,8,9\}\) et \(B=\{1,2,3\}\).  La proposition suivante est-elle vraie ou fausse : \("\exists\, x\in A\, :\, x+7<10"\)?

La proposition "\(\forall a\in\mathbb{N},\, \forall b\in\mathbb{N}\, :\, a-b\in\mathbb{N}\)" est-elle vraie ou fausse ?

Ecrivez la phrase suivante sous forme de proposition composée et déterminez si elle est vraie ou fausse. Précisez les propositions simples P et Q que vous utilisez. "Paris est en Angleterre ou Londres est en France.''

La proposition "\(\neg (P\wedge Q)\Leftrightarrow(\neg P\vee\neg Q)\)'' est une tautologie.

La proposition "Tout carré est un rectangle'' est-elle vraie ou fausse ?

Ecrivez la phrase suivante sous forme de proposition composée et déterminez si elle est vraie ou fausse. Précisez les propositions simples P et Q que vous utilisez. "2 + 2 = 5 si et seulement si 4 + 4 = 10."

La contraposée de "\(x\in\mathbb{N}\Rightarrow x\in\mathbb{R}\)" est

Soit \(A=\{2,3,4,5,6,7,8,9\}\) et \(B=\{1,2,3\}\).  La proposition suivante est-elle vraie ou fausse : \("\forall x\in A\, :\, x^ 2>1"\)?

La négation de la proposition "\(x\in\mathbb{Z}\)" est