Auto-Math
Sans calculatrice, calculez \(\sin\theta\) si \(\theta=\dfrac{5\pi}{6} \).
\( -\dfrac{1}{2} \)
\( \dfrac{1}{2} \)
\(\dfrac{\sqrt{3}}{2} \)
\( 150 \)
Déterminez à l'aide du cercle trigonométrique la valeur de \(\sin\dfrac{2\pi}{3} \).
\( \dfrac{\sqrt{3}}{2} \)
\( -\dfrac{\sqrt{3}}{2} \)
Résolvez l'équation \(tg\, 3x = \dfrac{\sqrt{3}}{3}\) .
\( S=\left\{\dfrac{\pi}{18}\right\} \)
\( S=\left\{\dfrac{\pi}{18}+k\dfrac{\pi}{3};\, k\in\mathbb{Z}\right\} \)
\( S=\left\{\dfrac{\pi}{18}+2k\dfrac{\pi}{3};\, k\in\mathbb{Z}\right\} \)
\( S=\left\{\dfrac{\pi}{18}+2k\pi;\, k\in\mathbb{Z}\right\} \)
Résolvez l'équation \(\sin x = \sin 2x \).
\( S=\left\{k\pi,\, \dfrac{\pi}{3}+2k\pi,\, \dfrac{5\pi}{3}+2k\pi;\, k\in\mathbb{Z}\right\} \)
\( S=\left\{0,\, \pi,\, \dfrac{\pi}{3},\, \dfrac{5\pi}{3}\right\} \)
\( S=\left\{k\pi,\, \dfrac{\pi}{3}+2k\pi;\, k\in\mathbb{Z}\right\} \)
\( S=\left\{k\pi,\, \dfrac{\pi}{6}+2k\pi,\, \dfrac{11\pi}{6}+2k\pi;\, k\in\mathbb{Z}\right\} \)
Convertissez en degrés l'angle \(2\pi \over 3\) .
\( \dfrac{1}{3} \mbox{ degrés}\)
\( \dfrac{2}{3}\mbox{ degrés}\)
\( 60\mbox{ degrés}\)
\( 120 \mbox{ degrés}\)
Résolvez l'équation \(\cos x = \cos \dfrac{\pi}{3} \).
\( S=\left\{\dfrac{\pi}{3}\right\} \)
\( S=\left\{\dfrac{\pi}{3}+2k\pi,\, -\dfrac{\pi}{3}+2k\pi;\, k\in\mathbb{Z}\right\} \)
\( S=\left\{\dfrac{\pi}{3},\, -\dfrac{\pi}{3}\right\} \)
\( S=\left\{\dfrac{\pi}{3}+2k\pi,\, \dfrac{2\pi}{3}+2k\pi;\, k\in\mathbb{Z}\right\} \)
\(\sin ({\pi \over 2}+a)= \)
\( \cos a \)
\(\sin a \)
\( 1+\sin a \)
\( -\cos a \)
Déterminez à l'aide du cercle trigonométrique la valeur de \(\cos\dfrac{4\pi}{3}\) .
Donnez la valeur de \( \sin {\pi \over 2}\) .
1
-1
0
90
Convertissez en radians l'angle \(390^\circ \).
\(30\mbox{ radians}\)
\(\dfrac{\pi}{3} \mbox{ radians}\)
\( \dfrac{\pi}{6}\mbox{ radians}\)
\( 2\pi \mbox{ radians}\)